

Serie AC10 Antrieb mit variabler Drehzahl

IP20 0-180kW

HA502320U001 Issue 6 - Deutsch Product Manual aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

AC10 Serie

Produkthandbuch
HA502320U001 Ausgabe 6

2016 Parker Hannifin Manufacturing Ltd.

Alle Rechte vorbehalten. Dieses Dokument darf ohne schriftliche Genehmigung von Parker SSD Drives, einer Division von Parker Hannifin Ltd, weder als Ganzes noch in Teilen auf einem Abfragesystem gespeichert oder an andere Personen als an Mitarbeiter eines Unternehmens von Parker SSD Drives weitergegeben werden – ungeachtet der gewählten Form und des verwendeten Mittels. Es wurden alle erdenklichen Anstrengungen unternommen, um die Genauigkeit dieses Dokuments zu gewährleisten. Dennoch kann es erforderlich sein, Änderungen oder Ergänzungen ohne vorherige Ankündigung vorzunehmen. Parker SSD Drives übernimmt keine Haftung für Schäden, Körperverletzungen oder Kosten, die sich ggf. hieraus ergeben.

GARANTIE

Soweit nichts anderes vereinbart wurde, gelten für dieses Produkt die allgemeinen Verkaufsbedingungen für den Verkauf von Waren und/oder Dienstleistungen von Parker Hannifin Europe Sarl, Luxemburg, Schweizer Niederlassung Etoy. Die allgemeinen Geschäftsbedingungen sind auf unserer Website unter www.parker.com/termsandconditions/switzerland verfügbar.

MÄNGEL AN ODER UNSACHGEMÄSSE AUSWAHL ODER UNSACHGEMÄSSE VERWENDUNG DER HIERIN BESCHRIEBENEN PRODUKTE ODER ZUGEHÖRIGER TEILE KÖNNEN TOD, PERSONEN- UND SACHSCHÄDEN VERURSACHEN.

Dieses Dokument und andere Informationen von der Parker-Hannifin Corporation, ihren Tochtergesellschaften und Vertragshändlern enthalten Produkt- oder Systemoptionen zur weiteren Auswertung durch Anwender mit technischen Kenntnissen.

Der Anwender ist auf der Grundlage seiner eigenen Analyse und Testergebnisse allein für die endgültige Auswahl des Systems und der Komponenten verantwortlich. Er hat sicherzustellen, dass alle Leistungs-, Haltbarkeits-, Wartungs-, Sicherheits- und Warnvoraussetzungen des jeweiligen Einsatzbereiches erfüllt sind. Der Anwender muss alle Aspekte der Anwendung genau untersuchen, geltenden Industrienormen folgen und die Informationen in Bezug auf das Produkt im aktuellen Produktkatalog sowie alle anderen Unterlagen, die von Parker oder seinen Tochtergesellschaften oder Vertragshändlern bereitgestellt werden, beachten.

Soweit Parker oder seine Tochtergesellschaften oder Vertragshändler Komponenten oder Systemoptionen basierend auf technischen Daten oder Spezifikationen liefern, die vom Anwender beigestellt wurden, ist der Anwender dafür verantwortlich festzustellen, dass diese technischen Daten und Spezifikationen für alle Anwendungen und vernünftigerweise vorhersehbaren Verwendungszwecke der Komponenten oder Systeme geeignet sind und ausreichen.

Sicherheit

Sicherheitshinweise

Voraussetzungen

IMPORTANT:

Lesen Sie sich die hier enthaltenen Hinweise bitte VOR der Installation des Geräts sorgfältig durch.

Anwender-Zielgruppe

Dieses Handbuch richtet sich an alle Personen, die das beschriebene Gerät installieren, konfigurieren oder bedienen müssen oder damit verbundene Aufgaben zu erfüllen haben.

Das vorliegende Kapitel enthält Sicherheitshinweise und EMV-Bestimmungen und soll einen optimalen Betrieb des Geräts für den Anwender gewährleisten.

Tragen Sie in die nachstehende Tabelle als künftige Referenz alle relevanten Informationen zur Installation und Verwendung des Geräts ein.

Das vorliegende Kapitel enthält Sicherheitshinweise und soll einen optimalen Betrieb des Geräts für den Anwender gewährleisten.

IN	INSTALLATIONSHINWEISE										
Modellnummer (siehe Produktbeschriftung)											
Installationsort (relevant für Sie)											
Geräteverwendung: (siehe Zulassung für den Wechselrichter)	☐ Komponente	Hauptgerät									
Gerätemontage:	Wandmontage	☐ Einbau in Gehäuse									

Anwendungsbereich

Das beschriebene Gerät wurde zur Drehzahlregelung für industrielle Wechselstrom-Induktionsmotoren entwickelt.

Mitarbeiter

Installation, Betrieb und Wartung des Geräts dürfen ausschließlich von qualifiziertem Personal durchgeführt werden. Eine qualifizierte Person verfügt über die erforderlichen technischen Kenntnisse und ist mit allen geltenden Sicherheitsbestimmungen und relevanten Sicherheitsvorkehrungen, dem Installationsprozess, dem Betrieb und der Wartung des Geräts sowie mit allen damit verbundenen Gefahren vertraut.

Produktspezifische Warnhinweise

GEFAHR! - Die Nichtbeachtung der folgenden Hinweise kann Körperverletzungen zur Folge haben.

- Dieses Gerät kann durch den Kontakt mit frei rotierenden Geräteteilen und hoher Spannung lebensgefährlich sein.
- Aufgrund des hohen Erdschlussstroms muss das Gerät permanent geerdet und der Antriebsmotor mit einer geeigneten Schutzerde verbunden sein.
- Prüfen Sie vor jedem Eingriff in das Gerät die ordnungsgemäße Isolierung aller Spannungsanschlüsse. Vergessen Sie nicht, dass der Antrieb über mehrere Spannungsanschlüsse verfügen kann.
- An den Stromklemmen (Motorausgang, Spannungseingänge, DC-Bus und Bremse, sofern zutreffend) liegt auch bei Motorstillstand bzw. -halt ggf. noch eine berührungsgefährliche Spannung an.
- Verwenden Sie für Messungen ausschließlich ein Messgerät nach IEC 61010 (ab CAT III). Beginnen Sie immer mit dem höchsten Bereich. Messgeräte der Kat. I und II dürfen für dieses Produkt nicht verwendet werden.
- 6. Warten Sie mindestens 5 Minuten, (20 Minuten für über 30 kW) bis eine ausreichende Entladung der Antriebskondensatoren auf ein sicheres Spannungsniveau (< 50 V) gewährleistet ist. Prüfen Sie mit dem angegebenen Messgerät, das Messungen bis zu 1000 VDC/VAC Effektivwert unterstützen muss, ob zwischen allen Stromquellen und der Erdung weniger als 50 V vorhanden sind.</p>
- Sofern nicht anders angegeben, darf dieses Gerät NICHT zerlegt werden. Bei einer Betriebsstörung ist der Antrieb zurückzusenden. Siehe "Routinewartung und Reparatur".

WARNUNG! - Die Nichtbeachtung der folgenden Hinweise kann Körperverletzungen oder Geräteschäden zur Folge haben.

SICHERHEIT

Wenn EMV- und Sicherheitsanforderungen nicht vereinbar sind, erhält stets die Sicherheit des Personals Priorität.

- Führen Sie niemals
 Hochspannungswiderstandsprüfungen an
 Leitungen durch, ohne den Antrieb zuvor von dem zu prüfenden Stromkreis zu trennen.
- Stellen Sie unter Gewährleistung einer ausreichenden Lüftung sicher, dass ausreichende Schutzvorrichtungen und/oder zusätzliche Sicherheitssysteme vorhanden sind, um Körperverletzungen und Geräteschäden zu vermeiden.
- Beim Austausch eines Antriebs in einer Anwendung und vor der erneuten Inbetriebnahme muss auf jeden Fall sichergestellt werden, dass alle benutzerdefinierten Betriebsparameter ordnungsgemäß installiert wurden.
- Die AC10-Series ist keine Sicherheitskomponente und kein sicherheitsrelevantes Produkt.

- Alle Steuer- und Signalklemmen garantieren Schutzkleinspannungen (SELV), d. h. sie sind durch eine doppelte Isolierung geschützt. Vergewissern Sie sich, dass die gesamte externe Verdrahtung für die höchste Systemspannung zugelassen ist.
- Für im Motor enthaltene Thermofühler muss mindestens eine Basisisolierung sichergestellt werden.
- Alle im Wechselrichter freiliegenden Metallteile sind durch eine Basisisolierung geschützt und mit der Schutzerde verhunden
- Der Einsatz von Fehlerstromschutzschaltern (RCD) in Verbindung mit diesem Gerät wird nicht empfohlen. Sind sie dennoch erforderlich, sollte nur ein RCD des Typs B eingesetzt werden.

EMV

- Im Wohnbereich kann dieses Gerät Funkstörungen verursachen. In diesem Fall sind zusätzliche Schutzmaßnahmen zu ergreifen.
- Dieses Gerät enthält Teile, die empfindlich auf elektrostatische Entladungen (ESD) reagieren. Es sind deshalb Vorkehrungen zu treffen, die bei der Handhabung, Installation und Wartung dieses Geräts die Bildung elektrostatischer Ladung begrenzen.
- Dieses Gerät gehört der Produktklasse für eingeschränkten Vertrieb gemäß IEC 61800-3 an. Es ist als "professionelles Gerät" nach EN 61000-3-2 ausgewiesen. Vor dem Anschluss an eine Niederspannungsversorgung ist die Genehmigung des Stromversorgers einzuholen.

VORSICHT!

GEFAHR FÜR DIE ANWENDUNG

 Die in diesem Dokument beschriebenen technischen Daten, Prozesse und Schaltungen sind lediglich als globale Anleitung gedacht und erweisen sich u. U. als nicht geeignet für die spezifische Anwendung des Anwenders. Wir können keinesfalls die Eignung des in diesem Handbuch beschriebenen Geräts für bestimmte Anwendungen garantieren.

RISIKOABSCHÄTZUNG

Im Fehlerfall, Stromausfall, oder unbeabsichtigten Betriebsbedingungen kann der Wechselrichter nicht wie beabsichtigt. Bestimmtes:

- Gespeicherte Energie nicht entladen könnte auf ein sicheres Niveau so schnell wie vorgeschlagen, und kann immer noch vorhanden sein, auch wenn der Wechselrichter scheint ausgeschaltet werden.
- Drehrichtung des Motors ist nicht kontrolliert werden könnte
- Motordrehzahl nicht gesteuert werden kann
- Der Motor kann mit Energie versorgt werden

Ein Wechselrichter ist eine Komponente innerhalb eines Antriebssystems, das seinen Betrieb oder die Auswirkungen unter einem Fehlerzustand beeinflussen können. Dabei müssen angegeben werden:

- Gespeicherte Energie
- Versorgungs trennt
- Ablauflogik
- Unbeabsichtigte Betrieb

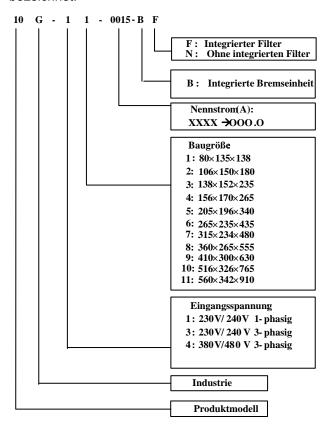
Inhaltsverz	eichnis		Seite
Kapitel 1	Einleitung]	1-1
·	1.1	Erläuterungen zum Produktcode	1-1
	1.2	Typenschildbeispiel	1-1
	1.3 I	Produktreihe	1-2
Kapitel 2		persicht	
	2.1 I	Konstruktionsnormen für die Implementierung	2-1
	2.2	Steuerungsfunktionen	2-2
Kapitel 3	Montage		3-1
	3.1	Vorsichtsmaßnahmen bezüglich des Geräts	3-1
	Leist	ungsreduzierung nach Temperatur	3-2
Kapitel 4	Wartung.		4-1
		Regelmäßige Überprüfungen	
		_agerung	
		Tägliche Wartung	
Kapitel 5		tur	
		Display	
	5.2 l 5.2.1	FernbedienungAnschluss des Bedienfelds	
14 11 10	0		
Kapitel 6		oau	
		Parametereinstellung Wechsel der Funktionscodes in/zwischen Codegruppen	
		Bedienfeldanzeige	
Kanital 7		n und Anschluss	
Kapitel 7		Montage	
		Anschluss	
		Messung von Spannung, Stromstärke und Leistung des	
	Haup	tstromkreises	7-5
		Funktionen der Steuerklemmen	
		Verdrahtung für Digitaleingangsklemmen:	
	7.5.1	,	
	7.5.2	2 Verdrahtung für aktive Quellelektrode	7-8
	7.5.3	B Verdrahtung für positive Senkenelektrode (PNP-Modus)	7-9
	7.5.4	Verdrahtung für aktive Drain-Elektrode (PNP-Modus)	7-9
	7.6	Anschlussübersicht	7-10
	7.7	Grundlegende Methoden der Rauschunterdrückung	7-12
	7.7.1	Rauschausbreitungspfade und -unterdrückungsmethoden	7-12
	7.7.2	2 Grundlegende Methoden der Rauschunterdrückung	7-13
	7.7.3	Feldbusanschlüsse	7-14
	7.7.4	Erdung	7-14
	7.7.5	· ·	
	7.7.6		
	7.7.7		
	1.1.1	Anwondung eines Netzinters	1-10

Inhaltsverze	eichnis		Seite
Kapitel 8	_	und einfacher Betrieb	
		rundbegriffe	
	8.1.1	Regelungsmodus	
	8.1.2	Drehmomentausgleichs-Modus	8-1
	8.1.3	Frequenzeinstellungsmodus	8-1
	8.1.4	Steuerungsmodus für Laufbefehle	8-1
	8.1.5	Betriebszustand des Wechselrichters	8-1
	8.2 B	edienfeld und Bedienmethode	8-2
	8.2.1	Methode zur Verwendung des Bedienfelds	8-2
	8.2.2	Einstellen der Parameter mit dem Bedienfeld	8-2
	8.2.3	Einstellen der Parameter	8-2
	8.2.4	Wechseln und Anzeigen der Statusparameter	8-3
	8.2.5	Umschalten der im Stoppstatus angezeigten Parameter	8-3
	8.2.6	Umschalten der im Laufstatus angezeigten Parameter	8-3
	8.2.7	Messung der Motorparameter	8-3
	8.2.8	Einfacher Lauf	8-4
	8.3 D	arstellung der Grundfunktionen	8-5
	8.3.1	Einstellen der Frequenz, Starten, Vorwärts- und Rückwärtslanden mit dem Bedienfeld	uf sowie
		Einstellen der Frequenz mithilfe des Bedienfelds, Starten, Vo Rückwärtslauf sowie Stoppen des Wechselrichters mit den erklemmen	
	8.3.3	Schrittbetrieb mithilfe des Bedienfelds	8-7
	8.3.4 Betrie	Einstellen der Frequenz mithilfe der Analogklemmen und Ste	
Kapitel 9	Funktions	parameter	9-1
		asisparameter	
	9.2 B	etriebssteuerung	9-10
		lultifunktionsein- und -ausgangsklemmen	
	9.3.1	Digitale Multifunktionsausgangsklemmen	9-18
	9.3.2	Digitale Multifunktionseingangsklemmen	9-22
	9.3.3	Überwachung des Analogeingangs	9-27
		nalogeingänge und -ausgänge	
		lehrstufige Drehzahlregelung	
		ilfsfunktionenunktionsstörung und Schutz	
	-	lotorparameter	
		ommunikationsparameter	
		ID-Parameter	
	9.11 P	arameter für die Drehmomentregelung	9-52
Kapitel 10	Fehlerbeh	ebung	10-1
Kapitel 11	Technisch	e Daten	11-1

Inhaltsverze	eichnis		Seite
	11.1 A	uswahl des Bremswiderstands	11-1
Kapitel 12	Modbus-K	ommunikation	12-1
	12.1 A	llgemeines	12-1
	12.2 N	lodbus-Protokoll	12-1
	12.2.	l Übertragungsmodus	12-1
	12.2.2	2 ASCII-Modus	12-1
	12.2.	3 RTU-Modus	12-1
	12.3 B	audrate	12-1
	12.4 Fra	me-Struktur:	12-2
	12,5 F	ehlerprüfung	
	12.5.	I ASCII-Modus	12-2
	12.5.	2 RTU-Modus	12-2
	12.5.	B Protokollumsetzer	12-3
	12.6 B	efehlstyp und Format	12-3
	12.6.	Adresse und Bedeutung	12-3
	12.6.2	2 Laufstatusparameter	12-5
	12.6.3	3 Steuerbefehle	12-7
	12.6.4	Unzulässige Reaktion beim Lesen der Parameter	12-7
	12.7 F	unktionscodes im Zusammenhang mit Kommunikationsfunktionen	. 12-8
	12.8 P	hysikalische Schnittstelle	12-9
	12.8.	Position der Schnittstelle	12-9
	12.8.2	2 Struktur des Feldbus	12-9
	12.9 E	rdung und Anschluss	12-9
	12.9.	l Beispiele	12-10
Kapitel 13	Standarda	nwendungen	13-1
	13.1 A	nwendung 1: Einfache Drehzahlregelung	13-2
	13.2 A	nwendung 2: Automatische/manuelle Regelung	13-4
		nwendung 3: Drehzahlvoreinstellungen	
		nwendung 4: Höher/tiefer sekundär (Potentiometer)	
	13.5	Anwendung 5: PID	.13-11
Kapitel 14		it	
		eltende Normen	
		UROPÄISCHE NORMEN	
	14.2.	9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	14.2.	2 EMV-Richtlinie	14-2
	14.2.	3 Maschinenrichtlinie	14-2
	14.2.4	EMV-Konformität	14-2
	14.3 E	MV-Normen im Vergleich	14-3
	14.3.	Gestrahlte Störaussendungen	14-3
		inweise zur Konformität in Nordamerika und Kanada	
	14.4.	UL-Standards	14-5

Inhaltsverze	nhaltsverzeichnis							
	14.	4.2 Konformität mit UL-Standards	14-5					
Kapitel 15	Parame	terreferenz	15-1					
	15.1	Basisparameter: F100 – F160	15-1					
	15.2	Laufsteuermodus: F200 – F230	15-4					
	15.3	Multifunktionsein- und -ausgangsklemmen: F300 – F330	15-7					
	15.4	Analogeingänge und -ausgänge F400 – F480	15-9					
	15.5	Mehrstufige Drehzahlregelung: F500 – F580	15-11					
	15.6	Hilfsfunktionen: F600 – F670	15-20					
	15.7	Zeitgebersteuerung und Schutzfunktion: F700 – F770	15-22					
	15.8	Motor Parameter F800 – F830	15-24					
	15.9	Kommunikationsparameter F900 – F930	15-25					
	15.10	PID-Parameter: FA00 – FA80	15-26					
	15.11	Parameter für die Drehmomentregelung: FC00 – FC40	15-27					

1-1 Einleitung


Kapitel 1 Einleitung

Dieses Handbuch bietet eine Einführung zur Installation und zum Anschluss der Serie AC10. Es behandelt außerdem Parametereinstellungen, Software und Bedienvorgänge.

1.1 Erläuterungen zum Produktcode

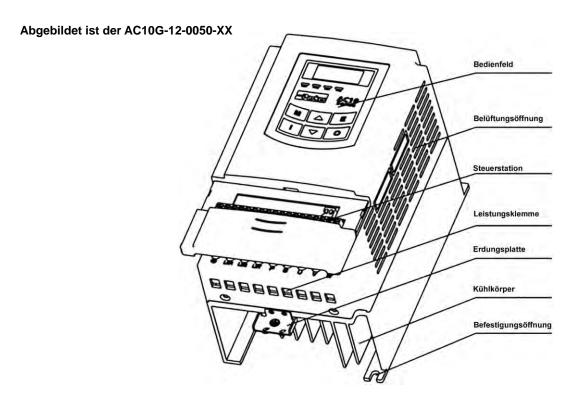
ModelInummer


Das Gerät wird anhand eines alphanumerischen Schlüssels aus vier Blöcken vollständig beschrieben. Dieser Schlüssel hält die unterschiedlichen Einstellungen bei Versand aus dem Werk und die Kalibrierdaten des Antriebs fest. Dieser Schlüssel wird auch als Bestellschlüssel bezeichnet.

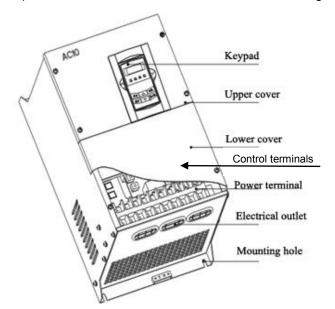
1.2 Typenschildbeispiel

Dieses Typenschild gibt das Produkt als 2.2-kW-Wechselrichter der Serie AC10 IP20 mit Dreiphaseneingang an.

- 3 Ph: Dreiphaseneingang; 380 480 V, 50/60 Hz: Eingangsspannungsbereich und Nennfrequenz.
- 3 Ph: Dreiphasenausgang; 6,5 A; 2,2 kW: Nennausgangsstrom und Leistung;


1.3 Produktreihe

Spannung-	Artikoloumana	kW		Eingangsstro	Ausgangsst	Eingangs-	
sversorgung	Artikelnummer	KVV	230V	380V/400V	460V/480V	rom (A)	schutzstrom
	10G-11-0015-XX	0.2	4			1.5	6.0
	10G-11-0025-XX	0.37	5.8			2.5	10.0
	10G-11-0035-XX	0.55	7.6			3.5	14.0
1Ph 230V	10G-11-0045-XX	0.75	10			4.5	18.1
	10G-12-0050-XX	1.1	10.8			5	24.5
	10G-12-0070-XX	1.5	14			7	25.2
	10G-12-0100-XX	2.2	20			10	32.0
	10G-31-0015-XX	0.2	2.5			1.5	5.0
	10G-31-0025-XX	0.37	3.5			2.5	8.2
	10G-31-0035-XX	0.55	4.5			3.5	10.0
	10G-31-0045-XX	0.75	5.4			4.5	11.5
	10G-32-0050-XX	1.1	5.8			5	18.0
DF 2201/	10G-32-0070-XX	1.5	7.8			7	18.2
3Ph 230V	10G-32-0100-XX	2.2	11			10	21.5
	10G-33-0170-XX	4	18.5			17	28
	10G-34-0210-XX	5.5	22			21	33
	10G-35-0300-XX	7.5	31			30	47
	10G-35-0400-XX	11	41			40	62
	10G-36-0550-XX	15	57			55	86
	10G-41-0006-XX	0.2		1.1	0.8	0.6	2.5
	10G-41-0010-XX	0.37		1.5	1.2	1	5.0
	10G-41-0015-XX	0.55		2.1	1.8	1.5	5.5
	10G-42-0020-XX	0.75		3	2.1	2	6.5
	10G-42-0030-XX	1.1		4	3.2	3	10.2
	10G-42-0040-XX	1.5		5	4.2	4	11.0
	10G-42-0065-XX	2.2		7.5	7.0	6.5	15.0
	10G-43-0080-XX	3.7		10.5	8.3	8	18.0
	10G-43-0090-XX	4		11	9.2	9	21.0
	10G-43-0120-XX	5.5		14	11.5	12	29.0
	10G-44-0170-XX	7.5		18.5	16	17	34.0
	10G-44-0230-XX	11		24	21	23	46.5
3Ph 400V	10G-45-0320-XX	15		36.5	27	32	80.0
	10G-45-0380-XX	18.5		44	31	38	90
	10G-45-0440-XX	22		51	35	44	100
	10G-46-0600-XX	30		70	53	60	110
	10G-47-0750-XX	37		80	64	75	120
	10G-47-0900-XX	45		94	75	90	150
	10G-48-1100-XX	55		120	85	110	180
	10G-48-1500-XX	75		160	115	150	240
	10G-49-1800-XX	90		190	130	180	285
	10G-49-2200-XX	110		225	170	220	340
	10G-410-2650-XX	132		275	210	265	400
	10G-411-3200-XX	160		330	250	320	500
	10G-411-3600-XX	180		370	280	360	550


2-1 Produktübersicht

Kapitel 2 Produktübersicht

Der Wechselrichter der Serie AC10 verfügt über ein Kunststoffgehäuse (bis zu Baugröße 5).

Metallgehäuse (bis zu Baugröße 6-11)nutzt fortschrittliche Außen Kunststoff- Spritz und pulverPritzVerfahren auf der Oberfläche mit Farbe und abnehmbar Frontabdeckung, bequem für die Verdrahtung und Wartung übernommen einseitige Türscharnierstruktur. Unter 10G-46-0060 zum Beispiel werden das Aussehen und die Struktur unten gezeigt.

2.1 Konstruktionsnormen für die Implementierung

IEC/EN 61800-5-1: 2007, Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl – Anforderungen an die Sicherheit

IEC/EN 61800-3: 2004, Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl – Teil 3: EMV-Produktnorm einschließlich spezieller Prüfverfahren

IEC 529(1989)/EN60529 Degrees of protection provided by enclosure (IP code)

2.2 Steuerungsfunktionen

Tabelle 2-1 Technische Daten für Wechselrichter der Serie AC10

	Namanananananahansiah	3-phasig 380 – 480 V (+10 %, -15 %)
Eingang	Nennspannungsbereich	1-phasig 220 – 240 V ±15 % 3-phasig 220 – 240 V ±15 %
3 3	Nonefraguana	50/60 Hz
	Nennfrequenz	
Ausgang	Nennspannungsbereich	3-phasiger 0-EINGANG (V)
	Frequenzbereich	0,50 – 590,0 Hz
	Trägerfrequenz	800 – 10.000 Hz; Feste Trägerwelle und zufällige Trägerwelle können mit F159 ausgewählt werden.
	Eingangsfrequenzauflösung	Digitaleinstellung: 0,01 Hz, analoge Einstellung: Max. Frequenz × 0,1 %
	Regelungsmodus Anlaufdrehmoment	Sensorlose Vektorregelung (SVC), V/Hz-Regelung 0,5 Hz/150 % (SVC)
	Drehzahlregelungsbereich	1:100 (SVC)
	Drehzahlkonstanz	±0,5 % (SVC)
	Präzision der	±5 % (SVC)
		15 % (5 VC)
	Drehmomentregelung Überlastkapazität	150 % Nennstrom, 60 Sekunden
	Oberiastkapazitat	Automatische Drehmomenterhöhung, manuelle
	Drehmomenterhöhung	Drehmomenterhöhung beinhaltet 1 – 20 Kurven.
Regelungsmodus	VVVF-Kurve	3 Betriebsarten: quadratischer Typ, rechteckiger Typ und benutzerdefinierte V/Hz-Kurve.
	Gleichstrombremsung	Gleichstrom-Bremsfrequenz: 0,2 – 5,00 Hz, Bremszeit: 0,00 – 30,00 s
		Schrittbetrieb-Frequenzbereich: Min. Frequenz – max.
	Schrittbetriebsteuerung	Frequenz, Hochlauf- bzw. Auslaufzeit beim Schrittbetrieb:
		0.1 – 3000.0 s
	Betrieb mit automatischer	
	Umwälzung und Betrieb mit	Betrieb mit 15-stufiger Drehzahl durch Betrieb mit
	mehrstufiger Drehzahl	automatischer Umwälzung oder Anschlusssteuerung möglich.
	Einstellung der integrierten	Einfach zur Realisierung von Systemen mit geschlossenem
	PID	Steuerkreislauf
		Wenn sich die Versorgungsspannung ändert, kann die
	Automatische	Modulationsrate automatisch angepasst werden, sodass die
	Spannungsregelung (AVR)	Ausgangsspannung unverändert bleibt.
		Analoges Signal (0 – 5 V, 0 – 10 V, 0 – 20 mA); Tasten ▲/▼
	Frequenzeinstellung	des Tastenfelds (Anschluss), externe Steuerlogik und
		Einstellung für automatische Umwälzung
	Start-/Stopp-Steuerung	Anschlusssteuerung, Tastenfeldsteuerung oder
Dotrichofunktion		Kommunikationssteuerung
Betriebsfunktion		
Dethensiunktion	Befehlskanäle für Betrieb	3 Arten von Kanälen von Tastenfeld, Bedienterminals oder RS485
Detrieusiuriktion		
Detriebsturiktion	Befehlskanäle für Betrieb Frequenzquelle	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485.
Detriebsturiktion		RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über
	Frequenzquelle Zusätzliche Frequenzquelle	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen
Optional	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit
Optional	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integrierter Ausfall der Eingangsphase, Aus	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung,
	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom,	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung,
Optional	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung,	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen
Optional Schutzfunktion	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit sfall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min),
Optional Schutzfunktion MMI-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit sfall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert,
Optional Schutzfunktion MMI-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen
Optional	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen testatus des Wechselrichters
Optional Schutzfunktion MMI-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen testatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung,
Optional Schutzfunktion MMI-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen zur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen tsstatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder
Optional Schutzfunktion MMI- Anzeige	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen ur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen testatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung.
Optional Schutzfunktion MMI- Anzeige Umgebungsbeding-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort Umgebungstemperatur	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit sfall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen testatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung10 °C – +40 °C (50 °C bei reduzierter Leistung)
Optional Schutzfunktion MMI-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort Umgebungstemperatur Luftfeuchtigkeit der Umgebung	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen tsstatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung10 °C - +40 °C (50 °C bei reduzierter Leistung) Unter 90 % (nicht kondensierend)
Optional Schutzfunktion MMI- Anzeige Umgebungsbeding-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort Umgebungstemperatur Luftfeuchtigkeit der Umgebung Vibrationsstärke	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen tsstatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung. -10 °C – +40 °C (50 °C bei reduzierter Leistung) Unter 90 % (nicht kondensierend)
Optional Schutzfunktion MMI- Anzeige Umgebungsbeding-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort Umgebungstemperatur Luftfeuchtigkeit der Umgebung Vibrationsstärke Höhe über dem Meeresspiegel	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen tsstatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung. -10 °C – +40 °C (50 °C bei reduzierter Leistung) Unter 90 % (nicht kondensierend) Unter 0,5 g max. 1000 m (3000 m bei reduzierter Leistung)
Optional Schutzfunktion MMI- Anzeige Umgebungsbeding- ungen	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort Umgebungstemperatur Luftfeuchtigkeit der Umgebung Vibrationsstärke Höhe über dem Meeresspiegel Umgebung	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen tsstatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung. -10 °C – +40 °C (50 °C bei reduzierter Leistung) Unter 90 % (nicht kondensierend)
Optional Schutzfunktion MMI- Anzeige Umgebungsbeding-	Frequenzquelle Zusätzliche Frequenzquelle Integrierter EMV-Filter, integriert Ausfall der Eingangsphase, Aus DC-Überspannung, Überstrom, Stromblockierung, Überhitzung, Sieben-Segment-LED-Display z Ausgangsstrom, Ausgangsspan lineare Geschwindigkeit, Fehlert zur Anzeige des aktuellen Arbeit Gerätestandort Umgebungstemperatur Luftfeuchtigkeit der Umgebung Vibrationsstärke Höhe über dem Meeresspiegel	RS485 Frequenzquellen: Eingangsklemmen, von der MMI oder über RS485. 5 Optionen te Bremseinheit fall der Ausgangsphase, unzureichende Eingangsspannung, Wechselrichter-Überlastung, Motorüberlastung, externe Störung, analoge Leitung unterbrochen tur Anzeige von: Ausgangsfrequenz, Drehzahl (U/min), nung, DC-Busspannung, PID-Feedback-Wert, PID-Einstellwert, typen sowie Parametern für System und Betrieb; LED-Anzeigen tsstatus des Wechselrichters Im Innenbereich, geschützt vor direkter Sonneneinstrahlung, Staub, ätzenden Gasen, brennbaren Gasen, Dampf oder sonstiger Verschmutzung. -10 °C – +40 °C (50 °C bei reduzierter Leistung) Unter 90 % (nicht kondensierend) Unter 0,5 g max. 1000 m (3000 m bei reduzierter Leistung)

Kapitel 3 Montage

WICHTIG Lesen Sie vor der Installation dieses Gerätes Kapitel 14, "Konformität".

3.1 Vorsichtsmaßnahmen bezüglich des Geräts

- Prüfen Sie das Gerät auf Anzeichen von Transportschäden.
- Überprüfen Sie, ob der Produktcode auf dem Typenschild Ihren Anforderungen entspricht.
- Die Installations- und Anwendungsumgebung muss frei von Regen, Tropfen, Dampf, Staub, öligem Schmutz, ätzenden oder brennbaren Gasen oder Flüssigkeiten, Metallpartikeln oder Metallpulver sein. Umgebungstemperatur im Bereich von -10 °C – +50 °C (40 °C ohne Leistungsreduzierung)
- Installieren Sie den Wechselrichter nicht in der N\u00e4he brennbarer Materialien.
- Lassen Sie keine Gegenstände in den Wechselrichter fallen.
- Die Zuverlässigkeit von Wechselrichtern ist in hohem Maße von der Temperatur abhängig.
 Bei einer Zunahme der Umgebungstemperatur um 10 Grad verkürzt sich die Lebensdauer des Wechselrichters um die Hälfte.
- Der Wechselrichter ist vertikal in einem Schaltschrank zu installieren, wobei eine ungehinderte Belüftung gewährleistet sein muss. Bei Installation mehrerer Wechselrichter in einem Schaltschrank sind diese zur Gewährleistung der Belüftung nebeneinander zu installieren. Wenn mehrere Wechselrichter übereinander installiert werden müssen, ist eine zusätzliche Belüftung erforderlich.
- Die inneren Bauteile der Anlagen dürfen nach dem Ausschalten 15 Minuten lang nicht berührt werden. Warten Sie, bis alle Bauteile vollständig entladen sind.
- Die Eingangsklemmen R, S und T werden an die Stromversorgung mit 400 V angeschlossen, die Ausgangsklemmen U, V und W an den Motor.
- Eine ordnungsgemäße Erdung muss sichergestellt werden, wobei der Erdwiderstand 4 Ω nicht überschreiten darf. Motor und Wechselrichter müssen separat geerdet werden. Eine Erdung in Reihenschaltung ist nicht zulässig.
- Regelkreis und Laststromkreis müssen zur Vermeidung von Störungen separat verkabelt werden.
- Die Kabellänge sollte so gering wie möglich gehalten werden, um Gleichtaktstörungen zu vermeiden.
- Wenn zwischen Antrieb und Motor ein Trennschalter oder Schütz geschaltet werden muss, muss dieser Trennschalter bzw. dieses Schütz zur Vermeidung von Beschädigungen des Antriebs betätigt werden, wenn der Antrieb keinen Ausgang erzeugt.
- Vor der Verwendung des Antriebs muss die Isolierung der Motoren überprüft werden, insbesondere, wenn diese zum ersten Mal verwendet wird oder längere Zeit gelagert wurde. Dies verringert das Risiko, dass der Antrieb aufgrund einer fehlerhaften Isolierung des Motors beschädigt wird.
- Schließen Sie an die Ausgangsklemmen des Antriebs keinen Varistor oder Kondensator an, da die Ausgangsspannung des Antriebs eine Pulswellenform aufweist. Andernfalls kann es zu einer Schnellabschaltung oder zur Beschädigung der Komponenten kommen.

3.2 Minimaler lichter Raum

• Siehe Kapitel 7 Installation und Anschluss für die Abfertigung Informationen.

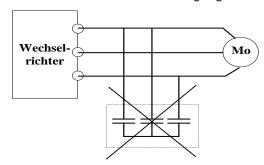


Abbildung 3-1 Kondensatoren dürfen nicht verwendet werden.

 Wenn der Antrieb in Höhen über 1000 m installiert wird, sollte die Leistung reduziert werden, da die Kühlwirkung des Antriebs, wie in Abbildung 3-2 gezeigt, in dünnerer Luft abnimmt. Die Abbildung zeigt den Zusammenhang zwischen Höhe und Nennstrom des Antriebs.

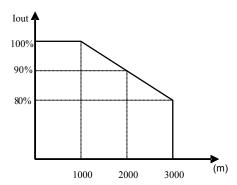
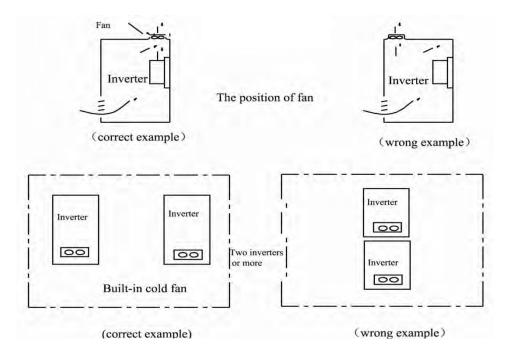


Fig 1-7 Derating Drive's output current with altitude


Abbildung 3-2 Reduzierung des Ausgangsstroms des Antriebs nach Höhe

Leistungsreduzierung nach Temperatur

											Le	istung	des A	Antriel	os (kW)										
		0.2	0.37	0.55	0.75	1.1	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	180
	0.2	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C									
	0.37	30 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C								
	0.55	20 C	30 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C							
	0.75		20 C	30 C	40 C	45 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C					
	1.1				30 C	40 C	45 C	50 C		50 C	50 C		50 C	50 C		50 C	50 C		50 C		50 C	50 C				
	1.5					30 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C		50 C										
	2.2						35 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C		50 C	50 C		50 C						
	3.7							25 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C		50 C	50 C		50 C	50 C	50 C	50 C
	4								30 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C		50 C						
(kW)	5.5									30 C	40 C	50 C	50 C	50 C	50 C	50 C	50 C	50 C		50 C	50 C		50 C	50 C	50 C	50 C
g (k	7.5										25 C	40 C	50 C	50 C	50 C		50 C	50 C		50 C						
Motorleistung	11											20 C	40 C	50 C	50 C	50 C	50 C	50 C		50 C	50 C		50 C	50 C	50 C	50 C
leis	15 18.5												20 C	40 C	50 C 40 C	50 C	50 C	50 C		50 C						
ţ	22													20 C	20 C	50 C	50 C	50 C		50 C						
Š	30														20 C	20 C	40 C	50 C		50 C						
	37															20 C	20 C	40 C		50 C						
	45																20 0	20 C		50 C	50 C	50 C	50 C		50 C	50 C
	55																	200	20 C	40 C	50 C					
	75																			20 C	40 C	50 C				
	90																				20 C	40 C	50 C	50 C	50 C	50 C
	110																					20 C	40 C	50 C	50 C	50 C
	132																						20 C	40 C	50 C	50 C
	160																							20 C	40 C	50 C
	180																								20 C	40 C

3-3 Montage

3.3 Inverters Installed in a Control Cabinet

Kapitel 4 Wartung

4.1 Regelmäßige Überprüfungen

Kühllüfter und Belüftungskanal müssen regelmäßig gereinigt und auf ordnungsgemäßen Zustand überprüft werden. Im Wechselrichter angesammelter Staub ist regelmäßig zu entfernen.

Überprüfen Sie regelmäßig die Ein- und Ausgangsverkabelungen sowie die Kabelanschlussklemmen des Wechselrichters auf Alterungserscheinungen.

Überprüfen Sie die Schrauben an den Anschlussklemmen auf festen Sitz.

4.2 Lagerung

Lagern Sie den Wechselrichter in der Originalverpackung.

Wenn der Wechselrichter für lange Zeit gelagert wird, laden Sie das Gerät einmal pro Halbjahr, um eine Beschädigung der Elektrolytkondensatoren zu verhindern. Die Ladezeit muss fünf Stunden überschreiten.

4.3 Tägliche Wartung

Umgebungstemperatur, Feuchtigkeit, Staub und Vibrationen können die Lebensdauer des Wechselrichters verkürzen. Wechselrichter müssen täglich gewartet werden.

Tägliche Inspektion:

Überprüfen des Motors auf Geräusche (im Betrieb)

Überprüfen des Motors auf ungewöhnliche Vibrationen (im Betrieb)

Überprüfen der Installationsumgebung des Wechselrichters

Überprüfen der Temperatur des Lüfters und des Wechselrichters

Tägliche Reinigung:

Halten Sie den Wechselrichter sauber. Reinigen Sie die Oberfläche von Staub, um das Eindringen von Metallpulver, öligem Schmutz und Wasser verhindern.

4.4 Rückgabe des Geräts an Parker SSD Drives

Bitte halten Sie folgende Informationen bereit:

- Die Modell- und Seriennummer siehe Typenschild der Einheit
- Die Angabe der Störung

Fragen Sie Ihren nächstgelegenen Parker SSD Drives Service Center zur Rückkehr des Einzelteils ordnen.

Sie erhalten eine Warenrücknahme gegeben werden. Verwenden Sie diese als Referenz auf alle Formalitäten mit dem fehlerhaften Einzelteil zurückzubringen. Packen und das Einzelteil in der Originalverpackung; oder zumindest ein antistatisches Verpackungsmaterial. Lassen Sie keine Verpackungschips in das Gerät eindringen.

Kapitel 5 Die Tastatur

5.1 Display

Das Bedienfeld ist in drei Bereiche unterteilt: **Datenanzeigebereich**, **Statusanzeigebereich** und **Tastenfeld**, siehe Abbildung 5-1.

LED zeigt Lauffrequenz, blinkend die Zielfrequenz, den Funktionscode, Parameterwert oder Fehlercode.

"DIGIT" 4 LEDs zeigen den Betriebsstatus an. RUN leuchtet während des Betriebs des Wechselrichters. FWD leuchtet im Vorwärtslauf und FRQ, wenn die MMI die Frequenz anzeigt.

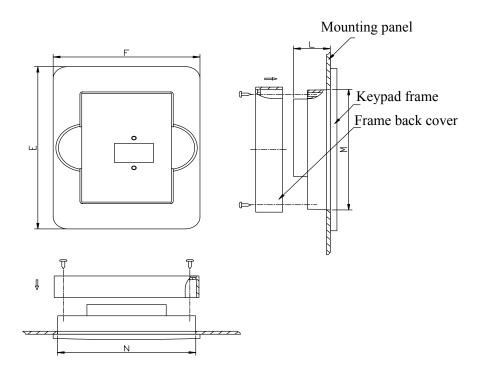
Drücken Sie "M" für den Funktionscode und "E" für die Originalparameter. Die Tasten ▲ und ▼ können zur Auswahl von Funktionscodes und Parametern verwendet werden. Drücken Sie zur Bestätigung erneut "E". Im Tastenfeldsteuerungs-Modus können die Tasten ▲ und ▼ auch zur dynamischen Drehzahlregelung verwendet werden. Die Tasten "I" und "O" steuern Start und Stopp. Drücken Sie die Taste "O", um den Wechselrichter im Fehlerstatus

Abbildung 5-1 Tastenfeldanzeige

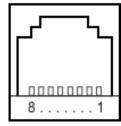
5.2 Fernbedienung

Das dezentral verwendbare Tastenfeld kann unter der Bestellnummer 1001-00-00 bestellt werden.

Der Posten umfasst das Tastenfeld, das Kabel sowie die Montagehalterungen.


Maßzeichnung

Abmessungen des Tastenfelds (Einheit: mm)


Code	Ein	В	С	T	Н	Öffnung
1001-00-00	124	74	120	70	26	121*71

5.2.1 Panel Mounting Dimensions

Ke	ypad panel	Opening size			
E	F	N	M		
170	110	102	142		

5.2.2 Anschluss des Bedienfelds

Pins	1	2	3	4	5	6	7	8
8-Kern	Nicht belegt	5 V	Masse	Masse	Signal 1	Signal 2	Signal 3	Signal 4

Die Standardlänge des Fernbedienungskabels beträgt 1 m. Bei schwerwiegenden Störungen oder einer Länge des Fernbedienungskabels über 3 m muss ein Magnetring am Kabel hinzugefügt werden.

6-1 Menüaufbau

Kapitel 6 Menüaufbau

Alle Tasten des Bedienfeldes sind für die Verwendung durch den Benutzer vorgesehen. Eine Aufstellung ihrer Funktionen finden Sie inTabelle6-1.

Tabelle6-1 Funktion der Tasten

Tasten	Namen	Erläuterung
Mo	Menü	Aufrufen von Funktionscodes und Wechseln des Anzeigemodus
E	Eingabe	Aufrufen und Speichern von Daten
A	Aufwärts	Erhöhung des Datenwerts (Drehzahlregelung oder Einstellungsparameter)
V	Abwärts	Verringerung des Datenwerts (Drehzahlregelung oder Einstellungsparameter)
	Lauf	Zum Starten des Wechselrichters
0	Stopp oder Reset	Zum Stoppen des Wechselrichters; zum Zurücksetzen im Fehlerstatus; zum Ändern der Funktionscodes in einer Codegruppe oder zwischen zwei Codegruppen Wenn auf der Funktionscode-Oberfläche die Taste "O" 3 s lange gedrückt gehalten wird, stoppt der Wechselrichter (wenn der Stopp-Befehl durch das Tastenfeld gesteuert wird).

6.1 Parametereinstellung

Dieser Wechselrichter weist zahlreiche Funktionsparameter auf, die Sie modifizieren können, um verschiedene Betriebsmodi auszuführen. Beachten Sie, dass Sie zunächst das Passwort eingeben müssen, wenn Sie das Passwort aktiviert haben (F107=1).

Tabelle6-2 Schrittfolge zur Einstellung der Parameter

Schritte	Tasten	Vorgehensweise	Display- Anzeige
1	M	Taste "M" drücken, um Funktionscode anzuzeigen	F100
2	▲ od ▼	Zur Auswahl des gewünschten Funktionscodes "Aufwärts" oder "Abwärts" drücken.	F114
3	E	Anzeigen der im Funktionscode eingestellten Daten	5.0
4	▲ od ▼	Zum Ändern von Daten	9.0
5	Mo	Anzeige der entsprechenden Zielfrequenz durch Blinken nach dem Speichern der eingestellten Daten	50.00
	E	Anzeigen des aktuellen Funktionscodes	F114

Die oben beschriebene Schrittfolge muss verwendet werden, wenn sich der Wechselrichter im Stoppstatus befindet.

6.1.1 Wechsel der Funktionscodes in/zwischen Codegruppen

Das Gerät verfügt über mehr als 300 für den Benutzer zugängliche Parameter (Funktionscodes), die, wie in Tabelle6-3 gezeigt, in 10 Abschnitte unterteilt sind.

Name der Gruppe	Funktion Codebereich	Gruppen- Nr.	Name der Gruppe	Funktion Codebereich	Gruppen- Nr.
Basisparameter	F100 – F160	1	Zeitgebersteuerung und Schutzfunktion	F700 – F770	7
Laufsteuerungsmodus	F200 – F280	2	Parameter des Motors	F800 – F850	8
Multifunktionaler Eingang/Ausgang	F300 – F340	3	Kommunikationsfunktion	F900 – F930	9
Analoge Signale und Impuls des Eingangs/Ausgangs	F400 – F480	4	PID-Parametereinstellung	FA00 – FA80	10
Parameter für mehrstufige Drehzahl	F500 – F580	5	Drehmomentregelung	FC00 - FC40	11
Unterfunktion	F600 – F670	6			

Da die Einstellung der Parameter aufgrund der Vielzahl der Funktionscodes zeitaufwendig sein kann, wurde diese Funktion speziell als "Funktionscodewechsel in einer Codegruppe oder zwischen zwei Codegruppen" ausgelegt, wodurch sich die Einstellung der Parameter einfach und bequem gestaltet.

Drücken Sie die Taste "M", sodass der Funktionscode auf dem Bedienfeld angezeigt wird. Wenn Sie die Taste "▲" oder "▼" drücken, wird der Funktionscode innerhalb der Gruppe graduell erhöht bzw. verringert. Wenn Sie die Taste "O" erneut drücken, wechselt der Funktionscode bei der Betätigung der Tasten "▲" oder "▼" zwischen zwei Codegruppen. Wenn z. B. der Funktionscode F111 angezeigt wird und die Anzeige DGT aktiv ist, nimmt der Funktionscode beim Drücken der Tasten "▲" oder "▼" graduell innerhalb F100 – F160 ab bzw. zu. Wenn Sie erneut die Taste "O" drücken, wird die Anzeige DGT deaktiviert. Wenn Sie die Tasten "▲" oder "▼" drücken, wechseln die Funktion kurz nacheinander zwischen den zehn Codegruppen wie F211, F311…FA11, F111…, siehe Abbildung 6-1 (Der blinkende Wert "50.00" zeigt die entsprechenden Zielfrequenzwerte an.)

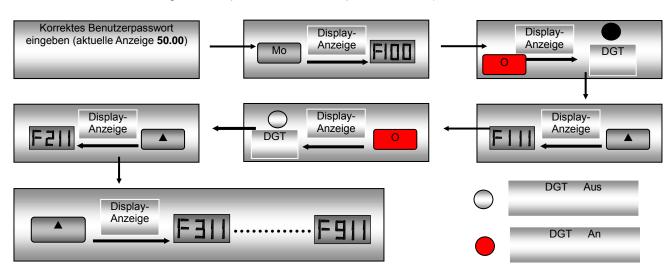


Abbildung 6-1 Wechsel in einer Codegruppe oder zwischen verschiedenen Codegruppen

6.3 Bedienfeldanzeige

Tabelle6-4 Auf dem Bedienfeld angezeigte Elemente mit Erläuterungen

Elemente	Erläuterung
AErr	Analog Input hat offene Verbindung
CE	Zeigt Kommunikationsfehler
Err2	Tuning-Parameter sind falsch eingestellt
Err3	Kurzzeitiger Überstrom
Err4	Strom Sampling Fehler
Err5	PID-Parameter sind falsch eingestellt
Err6	Watchdog Fehler
ESP	Externer Freilaufstopp-Anschluss ist geschlossen, ESP wird angezeigt.
FL	Zeigt Flycatching Fehlerzustand
LU	Zeigt Unterspannung für Eingangsbedingung
HF-0	Wird angezeigt, wenn Sie im Stoppstatus die Taste "M" drücken und gibt an, dass der Schrittbetrieb aktiv ist. HF-0 wird jedoch nur angezeigt, nachdem der Wert von F132 geändert wurde.
-HF-	Steht für den Rückstellungsprozess und zeigt nach der Rückstellung die Zielfrequenz an.
OC	zeigt Überstrom (OC)
OC1	zeigt an, Überstromzustand (OC1)
OE	zeigt an, Überspannungs-Zustand
ОН	zeigt an, Kühlkörper Überhitzung
OH1	zeigt an externe Überhitzung
OL1	zeigt Inverter Überlast
OL2	zeigt an, Motorüberlast
PF0	zeigt an, Phasenausfall für die Ausgabebedingung
PF1	zeigt an, Phasenausfall für die Eingangsbedingung
10,00	Zeigt die aktuelle Lauffrequenz (oder Drehzahl) des Wechselrichters und
50,00	Zeigt im Stoppstatus blinkend die Zielfrequenz an.
0	Haltezeit beim Ändern der Laufrichtung. Wenn der Befehl "Stopp" oder "Freistopp" ausgeführt wird, kann die Haltezeit abgebrochen werden.
A100	Ausgangsstrom (100A). Halten Sie eine Stelle nach rechts vom Komma, wenn der Strom unter 100A.
b*.*	PID-Feedbackwert wird angezeigt.
F152	Funktionscode (Parametercode)
H *	Kühlkörpertemperatur wird angezeigt.
L***	Lineargeschwindigkeit wird angezeigt.
O*.*	Eingegebener PID-Wert wird angezeigt.
u100	DC-Bus-Spannung (100V).
U100	Ausgangsspannung (100 V).

Kapitel 7 Installation und Anschluss

7.1 Montage

Der Wechselrichter muss, wie in Abbildung 7-1 gezeigt, vertikal installiert werden. Dabei ist für ausreichend Platz zur Belüftung zu sorgen.

Die empfohlenen Abstände für die Installation des Wechselrichters gehen aus Tabelle7-1 Abstände hervor. Abstand zwischen 2 Antrieben: 25 mm.

Tabelle7-1 Abstände

Bauform	Abstände	
Hängend	A ≥ 150 mm	B ≥ 50mm
Metallhänge	A≥200mm	B≥100mm

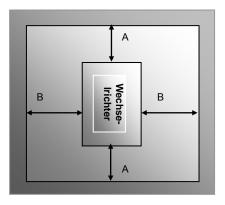
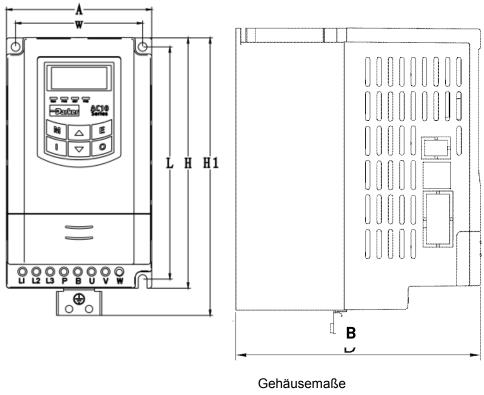
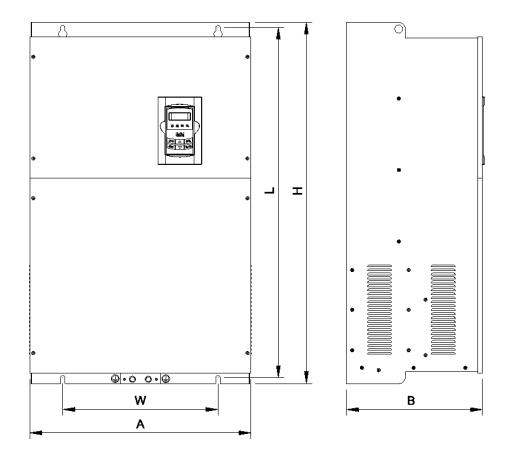



Abbildung 7-1 Montageskizze

Baugröße	Teilnummer	Außenmaß A×B×H (H1) mm	Max Gewicht	Montagegröße (B×L)	Befestigungsschraub e
1	10G-X1-XXXX-XX	80×135×138 (153)	1.25	70×128	M4
2	10G-X2-XXXX-XX	106×150×180 (195)	1.76	94×170	M4
3	10G-43-XXXX-XX	138×152×235 (250)	2.96	126×225	M5
4	10G-44-XXXX-XX	156×170×265 (280)	4.9	146×255	M5
5	10G-45-XXXX-XX	205×196 ×340 (355)	7.5	194×330	M5
6	10G-46-XXXX-XX	265 x 235 x 435	17	235x412	M6
7	10G-47-XXXX-XX	315 x 234 x 480	25	274x465	M8
8	10G-48-XXXX-XX	360 x 265 x 555	40	320x530	M8
9	10G-49-XXXX-XX	410 x 300 x 630	55	370x600	M10
10	10G-410-XXXX-XX	516 x 326 x 765	94	360x740	M10
11	10G-411-XXXX-XX	560 x 342 x 910	120	390x882	M10


Baugröße 1 – 5

Hinweis:

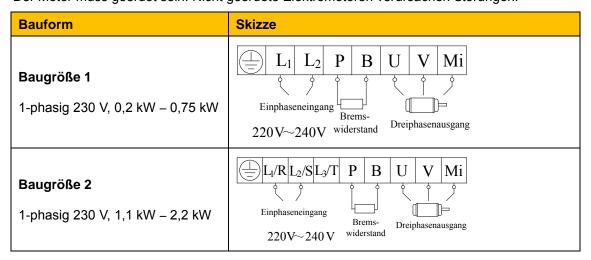
H ist die Größe des Wechselrichters ohne Erdungsplatte.

7-2 Installation und Anschluss

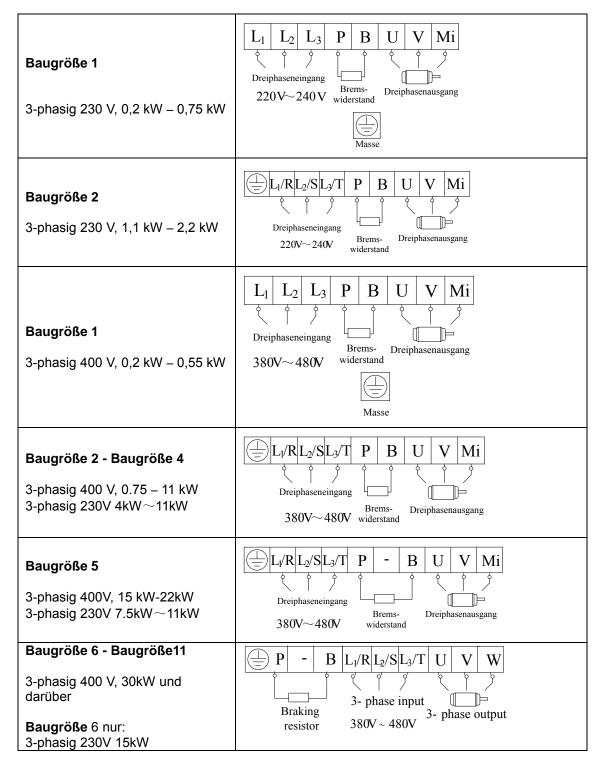
H1 ist die Größe des Wechselrichters mit Erdungsplatte.

Metallabdeckung Layout

Baugröße 6 - 11


Hinweis:

H ist die Größe des Wechselrichters ohne Erdungsplatte.


H1 ist die Größe des Wechselrichters mit Erdungsplatte.

7.2 Anschluss

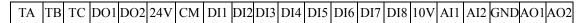
Der Motor muss geerdet sein. Nicht geerdete Elektromotoren verursachen Störungen.

Installation und Anschluss 7-3

7-4 Installation und Anschluss

7.2.1 Einführung der Anschlüsse des Laststromkreises

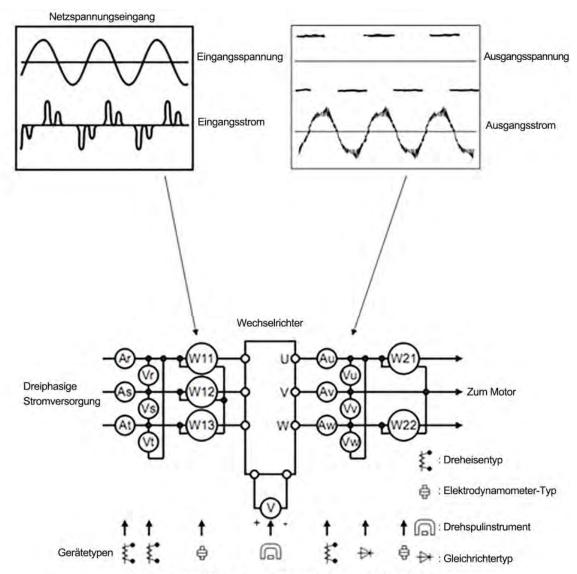
Klemmen	Klemmenbezeichnung	Beschreibung der Anschlussfunktion	
Eingangsklemme Stromversorgung	R/L1, S/L2, T/L3	Eingangsklemmen für dreiphasige Wechselspannung 400 V (bei Einphasenbetrieb Klemmen R/L1 und S/L2)	
Ausgangsklemme	U, V, W	Ausgangsklemme des Wechselrichters, mit Motor verbunden	
Masseklemme		Masseklemme des Wechselrichters	
	P, B	Externer Bremswiderstand (Hinweis: keine Klemmen P oder B für Wechselrichter ohne integrierte Bremseinheit)	
Bremsklemmen	P, -	DC-Bus-Leitungsausgang Externe Verbindungen zu optionaler Bremseinheit P mit Eingangsklemme "P" oder "DC+" der Bremseinheit verbunden – verbunden mit Eingangsklemme "N" oder "DC-" der Bremseinheit.	


7.2.2 Steuerklemmen

Klemmen für den Regelkreis wie folgt:

für 22kW und unterhalb

Für 30 - 180kw


Modbus RTU/RS485

Auf Seite des Laufwerks für Baugröße 1-5, unter Frontabdeckung für Baugröße 6-11

GND 5V A+ B-

7.3 Messung von Spannung, Stromstärke und Leistung des Hauptstromkreises

Da die Spannungen und Ströme des Wechselrichters auf der Stromversorgungs- und Ausgangsseite Oberschwingungen beinhalten, hängen die Messdaten von den verwendeten Instrumenten und den gemessenen Stromkreisen ab. Wenn zur Messung handelsübliche Instrumente verwendet werden, messen Sie mit den empfohlenen Instrumenten die folgenden Stromkreise.

Beispiele für Messpunkte und Geräte

Tabelle7-2

Element	Messpunkt	Messinstrument	Bemerkungen (Referenzmesswert)
Versorgungs- spannung V1	Zwischen R-S, S-T, T-R	Dreheisen- Voltmeter für Wechselspannung	400 V ±15 %, 230 V ±15 %
Stromversorgun-g sseitige Stromstärke I1	Stromstärken der Leitungen R, S, und T	Dreheisen- Voltmeter für Wechselspannung	
Stromversorgun-g sseitige Leistung P1	An R, S und T sowie zwischen R-S, S-T und T-R	Elektrodynamisches einphasiges Wattmeter	P1 = W11 + W12 + W13 (3-Wattmetermethode)
Stromversorgun-g sseitiger Leistungsfaktor Pf1	Nach Messung der Vers Stromstärke und der stro [Dreiphasen-Stromverso $Pf1 = \frac{P1}{\sqrt{3}V1 \times I1} \times 100\%$	omversorgungsseitigen L rgung]	tromversorgungsseitigen Leistung berechnen.
Ausgangsseitige Spannung V2	Zwischen U-V, V-B und B-U	Gleichrichter Typ AC- Voltmeter (Dreheisentyp nicht zur Messung geeignet)	Differenz zwischen den Phasen liegt zwischen ±1 % der maximalen Ausgangsspannung.
Ausgangsseitige Stromstärke I2	Stromstärken der Leitungen U, V, und W	Dreheisen-AC- Amperemeter	Stromstärke sollte kleiner oder gleich dem Nennstrom des Wechselrichters sein. Differenz zwischen den Phasen sollte maximal 10 % des Nennstroms des Wechselrichters betragen.
Ausgangsseitige Leistung P2	U, V, W und U-V, V-W,W-U	Elektrodynamisches einphasiges Wattmeter	P2 = W21 + W22 2-Wattmetermethode
Ausgangsseitiger Leistungs- faktor Pf2	Ähnlich wie stromversor $Pf 2 = \frac{P2}{\sqrt{3}V2 \times I2} \times 100\%$		faktor berechnen:
Wechselrichter- ausgang	Zwischen P+(P)und -(N)	Drehspulinstrument (z. B. Multimeter)	DC-Spannung, der Wert ist $\sqrt{2} \times V1$
Stromversorgung der	Zwischen 10V-GND	Drehspulinstrument (z. B. Multimeter)	DC 10 V ±0,2 V
Steuerungsplatine	Zwischen 24V-CM	Drehspulinstrument (z. B. Multimeter)	DC 24 V ±1,5 V
Analogausgang AO1	Zwischen AO1-GND	Drehspulinstrument (z. B. Multimeter)	Ca. DC 10 V bei max. Frequenz
Alarmsignal	Zwischen TA/TC Zwischen TB/TC	Drehspulinstrument (z. B. Multimeter)	<normal> <anormal> Zwischen TA/TC: Störstelle Durchgang Zwischen TB/TC: Durchgang Störstelle</anormal></normal>

7.4 Funktionen der Steuerklemmen

Für den Betrieb des Wechselrichters müssen die Steuerklemmen korrekt und flexibel verwendet werden. Nachstehend finden Sie eine Beschreibung der Eingangsklemmen und entsprechenden Parameter.

Tabelle7-3 Funktionen der Steuerklemmen

Klemme	Тур	Beschreibung	Funktion			
DO1 DO2 Hinweis 1		Multifunktionale Ausgangsklemme 1 Multifunktionale Ausgangsklemme 2	Wenn die Tokenfunktion aktiv ist, beträgt der Wert zwischen dieser Klemme und CM 0 V. Wenn der Wechselrichter gestoppt wurde, beträgt der Wert 24 V.	Die Funktionen der Ausgangsklemmen müssen entsprechend den vom Hersteller		
TA TB TC	Ausgangs- signal	Relaiskontakt	TC ist ein gemeinsamer Anschlusspunkt, TB-TC sind stromlos geschlossene Kontakte, TA-TC sind stromlos geöffnete Kontakte. Die Kontaktkapazität beträgt 10 A/125 VAC,	vorgesehenen Werten definiert werden. Ihr ursprünglicher Zustand kann durch Ändern der Funktionscodes geändert werden.		
AO1		Lauffrequenz	5 A/250 VAC, 5 A/30 VDC. Extern mit Frequenzmesser, Geschwindig			
AO2	Analogausgang	Stromanzeige	Amperemeter verbunden, Minuspol mit GND verbunden. Details siehe F423 – F426. Es wird mit Amperemeter extern verbunden ist und dessen Minus			
10 V	Analoge Strom- versorgung	Netzunabhängige Stromversorgung	mit GND verbunden. Siehe F427 ~ F430 Der Wechselrichter wird durch eine intern Stromversorgung mit 10-V-Spannung ver- nur als Stromversorgung für das Spannur Stromstärke unter 20 mA verwendet werc	e netzunabhängige sorgt. Extern kann diese ngssteuersignal mit einer		
Al1			Bei analoger Drehzahlregelung wird das Stromsignal über diese Klemme eingegel Eingangsspannung liegt im Bereich 0 – 1	oen. Die 0 V, die Stromaufnahme im		
Al2	Eingangs- signal	Spannung/Strom- Analogeingang	Bereich 0 – 20 mA. Der Eingangswidersta die Masse: GND. Bei einem Eingang von realisiert werden, indem F406 auf 2 gese oder Stromsignal kann durch einen Kodie Einzelheiten siehe Tabelle 8-2 und Tabell Standardeinstellung von Al1 ist 0 – 10 V. von Al2 ist 0 – 20 mA.	4 – 20 mA kann dies tzt wird. Das Spannungs- erschalter gewählt werden. e 8-4. Die		
GND		Netzunabhängige Spannungsversorgung Masse	Die Masseklemme für das externe Steuersignal (Spannungssteuersignal oder Stromquellen-Steuersignal) ist auch die Masse für die 10-V-Stromversorgung dieses Wechselrichters.			
24 V	Strom- versorgung	Steuerungsstromver- sorgung	Leistung: 24 ±1,5 V, Masse ist CM; Strom Nutzung auf 50 mA beschränkt.	stärke ist für externe		
DI1	overgang	Schrittbetriebklemme	Wenn diese Klemme aktiv ist, läuft der Wechselrichter im Schrittbetrieb. Die Schrittbetriebsfunktion dieser Klemme ist im gestoppten und aktiven Status aktiviert.			
DI2		Externer Freilaufstopp	Wenn diese Klemme aktiv ist, wird das Fehlersignal "ESP" angezeigt.	Die Funktionen der		
DI3		Klemme "FWD"	Wenn diese Klemme aktiv ist, läuft der Wechselrichter vorwärts.	Eingangsklemmen müssen entsprechend		
DI4		Klemme "REV"	Wenn diese Klemme aktiv ist, läuft der Wechselrichter rückwärts.	den vom Hersteller vorgesehenen Werten		
DI5	Digitaleingangs- klemme	Rückstellungsklemme	Aktivieren Sie diese Klemme im Fehlerstatus, um den Wechselrichter zurückzusetzen.	definiert werden. Weitere Funktionen können durch Ändern von		
DI6		Kostenios Stopp	Machen Sie diese Klemme während des Betriebs können Sie kostenlos Anschlag zu realisieren gilt.	Funktionscodes definiert werden.		
DI7 Hinweis 1		Laufen Terminal	Wenn dieser Anschluss im gültigen Zustand, werden Wechselrichter von der Hochlaufzeit ausgeführt werden.	Steuerklemmen		
DI8 Hinweis 1		Stop-Terminal	Machen Sie diese Klemme während des Betriebs können durch die Stoppverzögerungszeit zu realisieren gilt.			
CM Hinweis 2	Gemeinsamer Anschluss	Masse der Steuerungsstromvers-or gung	Die Masse der 24-V-Spannungsversorgui Steuersignale	ng und anderer		
+5 V Hinweis 1		Netzunabhängige	Erdung für digitales Signal			
A+ Hinweis 2 B-	RS485-Kommunikat ionsanschlüsse	Positive Polarität des Differenzsignals Negative Polarität des	Standard: 11A/EIA-485(RS-485) Kommunikationenrotokoll: Modbus			
Hinweis 2	Llimusia 4. diagan	Differenzsignals	Date mate. 1200/2400/4000/9000/19200/30400/3/400/3/400/			

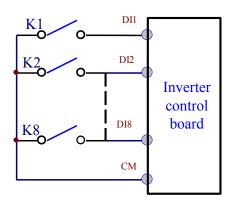
Hinweis 1: dieser Anschluss nicht in 22kW und unterhalb 22kW Wechselrichter enthalten.

7-8 Installation und Anschluss

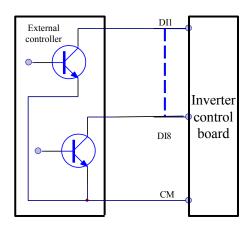
Hinweis 2: GND, 5 V, A + und B- sind auf separaten 4-polige Anschlussklemme.

Hinweis 3: Der Kontakt Kapazität für 30 kW und über 30 kW Wechselrichter ist 10 A / 125 V AC, NO / NC 3A, 250VAC / 30VDC.

Hinweis 4: Die "wahren" Zustand für diese Klemmen entweder 24 V, wenn sie für PNP-Betrieb oder 0 konfiguriert, wenn für NPN-Betrieb konfiguriert.

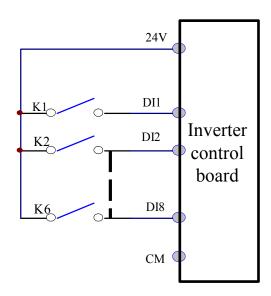

7.5 Verdrahtung für Digitaleingangsklemmen:

Grundsätzlich wird empfohlen, ein geschirmtes Kabel zu verwenden und die Kabelstrecke so kurz wie möglich zu halten. Wenn das analoge Referenzsignal verwendet wird, müssen Filtermaßnahmen zur Verhinderung von Störungen durch die Stromversorgung ergriffen werden.

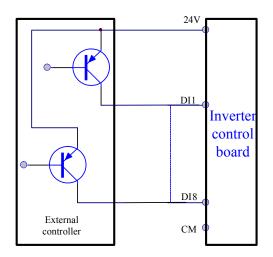

Digitaleingangsklemmen werden nur durch Quellelektroden (NPN-Modus) oder durch Senkenelektroden (PNP-Modus) verbunden. Wenn der NPN-Modus verwendet wird, stellen Sie den Kippschalter in Richtung "NPN".

Die Verdrahtung der Steuerklemmen erfolgt folgendermaßen:

7.5.1 Verdrahtung für positive Quellelektrode (NPN-Modus)



7.5.2 Verdrahtung für aktive Quellelektrode



Wenn die Steuerklemmen für die Digitaleingänge durch eine Senkenelektrode verbunden werden, stellen Sie den Kippschalter in Richtung "PNP". Die Verdrahtung der Steuerklemmen erfolgt folgendermaßen:

7.5.3 Verdrahtung für positive Senkenelektrode (PNP-Modus)


7.5.4 Verdrahtung für aktive Drain-Elektrode (PNP-Modus)

Gegenwärtig wird hauptsächlich die Verdrahtung durch Quellelektroden verwendet. Die Verdrahtung für Steuerklemmen wird durch Quellelektroden verbunden. Die Verdrahtungsmethode sollte nach Bedarf ausgewählt werden.

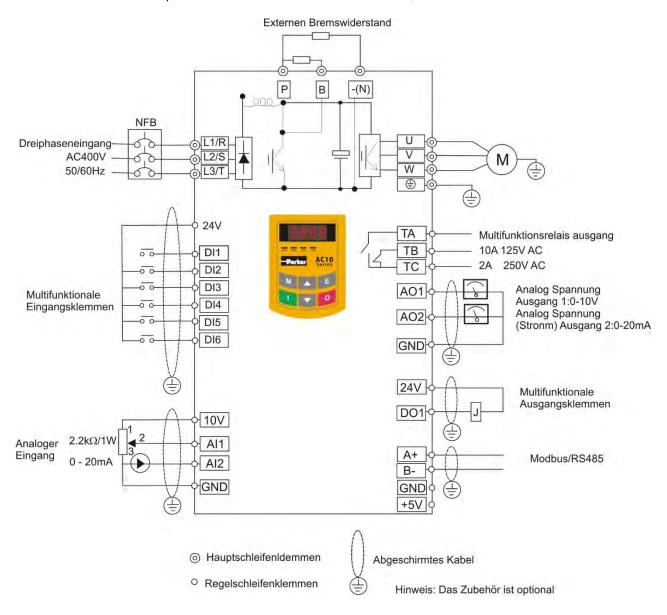
Auswählen des NPN- oder PNP-Modus:

- 1. In der Nähe der Steuerklemmen befindet sich der Kippschalter J7, siehe Abbildung 7-2.
- 2. Wenn der Schalter J7 in die Position "NPN" gestellt wird, wird die Klemme DI mit CM verbunden.

Wenn der Schalter J7 in die Position "PNP" gestellt wird, wird die Klemme DI mit 24 V verbunden.

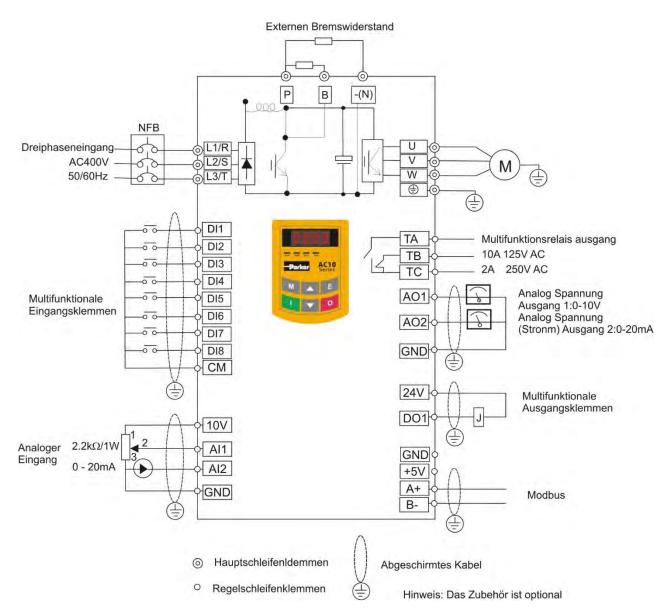
J7 befindet sich auf der Rückseite der Steuertafel für den einphasigen Wechselrichter 0,2 – 0,75 kW.

7.6 Anschlussübersicht


Die nächste Abbildung zeigt eine allgemeine Verbindungsskizze für Wechselrichter der Serie AC10. Verdrahtungsmethoden sind für verschiedene Anschlüsse verfügbar, wobei nicht alle Klemmen in jedem Betriebsmodus verbunden werden müssen.

Hinweis:

Verbinden Sie bei 1-phasigen Wechselrichtern nur die Klemmen L1/R und L2/S mit dem Stromnetz.


Der Kontakt Kapazität für 22 kW und 22 kW ist unter 10 A / 125 V AC, 5 A / 250 V AC, 5 A / 30 V DC.

Der Kontakt Kapazität für über 22 kW ist 10 A / 125 V AC, NO / NC: 3A 250VAC / 30VDC.

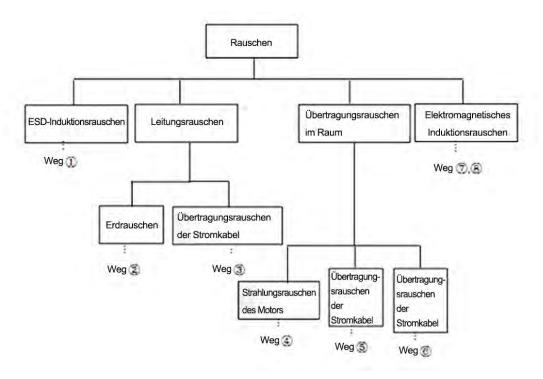
0,2 kW - 22 kW Grundverdrahtungsschema Mehrstufige Geschwindigkeitssteuerung Makro (PNP)

Installation und Anschluss 7-11

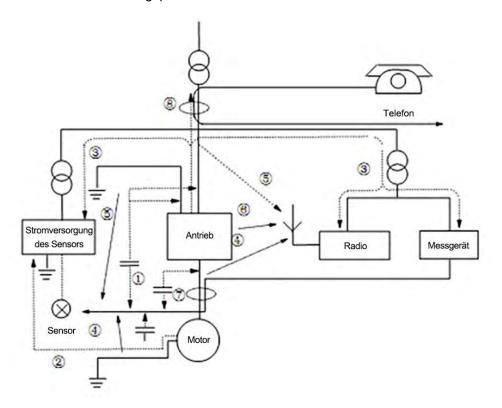
30kW - 180kW Prinzipschaltbild für Drehstromantriebe (NPN)

7.6.1 Anzugsmomente für Anschlussklemmen

Baugröße	Stromleiterp lattenanschl uss	Steuerplatine Klemmen	Abdeckung	Stromversorgung , Motor Klemme	Ventilator	Lüfterabde ckung
Baugröße 1	1.13Nm	0.6Nm	0.6Nm	1.13Nm	1.3Nm	1.3Nm
Baugröße 2	1.13Nm	0.6Nm	0.6Nm	1.13Nm	1.3Nm	1.3Nm
Baugröße 3	1.8Nm	0.6Nm	0.6Nm	1.8Nm	1.3Nm	1.3Nm
Baugröße 4	2.1Nm	0.6Nm	0.6Nm	2.1Nm	1.3Nm	1.3Nm
Baugröße 5	3.4Nm	0.6Nm	0.6Nm	3.4Nm	1.3Nm	1.3Nm
Baugröße 6	4.5Nm	0.6Nm	1.3Nm	4.5Nm	0.9Nm	0.9Nm
Baugröße 7	10 Nm	0.6Nm	1.3Nm	10 Nm	0.9Nm	0.9Nm
Baugröße 8	10 Nm	0.6Nm	2.4Nm	10 Nm	0.9Nm	0.9Nm
Baugröße 9	18 Nm	0.6Nm	2.4Nm	18 Nm	0.9Nm	0.9Nm
Baugröße 10	18 Nm	0.6Nm	2.4Nm	18 Nm	Big fan 1.	.5Nm
Baugröße 11	18 Nm	0.6Nm	2.4Nm	18 Nm	Small fan 2.4Nm	


7-12 Installation und Anschluss

7.7 Grundlegende Methoden der Rauschunterdrückung

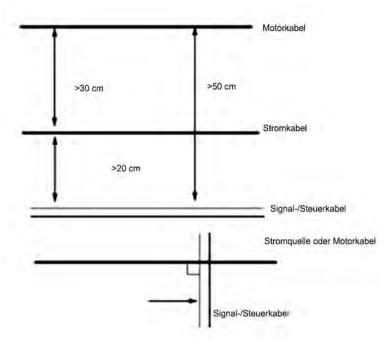

Das vom Antrieb erzeugte Rauschen kann in der Nähe befindliche Geräte stören. Das Ausmaß der Störung hängt vom Antriebssystem, der Störfestigkeit der Geräte, der Verkabelung, dem Installationsabstand und den Erdungsmethoden ab.

7.7.1 Rauschausbreitungspfade und -unterdrückungsmethoden

① Rauschkategorien

③ Rauschausbreitungspfade

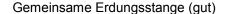
Installation und Anschluss 7-13

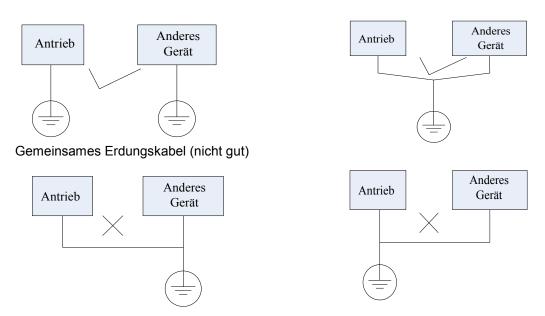

7.7.2 Grundlegende Methoden der Rauschunterdrückung

Pfade der Störaussendung			
2	Wenn das externe Gerät mit dem Antrieb einen Stromkreis bildet, kann es aufgrund des Erdfehlerstroms des Antriebs bei dem Gerät zu Fehlauslösungen kommen. Das Problem kann gelöst werden, wenn das Gerät nicht geerdet ist.		
3	Wenn das externe Gerät dieselbe Stromquelle wie der Antrieb verwendet, kann das Rauschen des Antriebs durch die eingehenden Stromversorgungskabel übertragen werden, wodurch es beim anderen externen Gerät zu Fehlauslösungen kommen kann. Ergreifen Sie zur Lösung dieses Problems die folgenden Maßnahmen: Installieren Sie auf der Eingangsseite des Antriebs Rauschfilter und verwenden Sie einen Trenntransformator oder Netzfilter, um die Störung der externen Geräte durch das Rauschen zu verhindern.		
	Wenn die Signalkabel von Messgeräten, Funkausrüstungen und Sensoren gemeinsam mit dem Antrieb in einem Schaltschrank installiert werden, kann es leicht zu Störungen dieser Kabel kommen. Ergreifen Sie zur Lösung des Problems die folgenden Maßnahmen:		
4,5,6	(1) Das Gerät und die Signalkabel sollten so weit wie möglich vom Antrieb entfernt platziert werden. Die Signalkabel sollten abgeschirmt werden und die Abschirmungsschicht sollte geerdet werden. Die Signalkabel sollten in einem Metallrohr verlegt werden und sich so weit wie möglich von den Eingangs-/Ausgangskabeln des Laufwerks entfernt befinden. Wenn Kreuzungen von Signalkabeln und Stromkabeln nicht zu vermeiden sind, sollten die Kabel rechtwinklig zueinander verlegt werden.		
	(2) Installieren Sie am Eingang und Ausgang des Antriebs Funkrauschfilter und lineare Rauschfilter (Gleichtakt-Ferritdrossel), um die Störabstrahlungen von Stromleitungen zu unterdrücken.		
	(3) Motorleitungen sollten in einer Röhre mit einer Stärke über 2 mm oder in einem Zementkabelrohr verlegt werden. Stromkabel sollten in einem Metallrohr verlegt und durch eine Abschirmungsschicht geerdet werden.		
1,7,8	Verlegen Sie die Signalkabel nicht parallel zu den Stromkabeln und bündeln Sie diese Kabel nicht, da das induzierte elektromagnetische Rauschen und das induzierte ESD-Rauschen die Signalkabel stören können. Andere Geräte sollten ebenfalls so weit wie möglich vom Antrieb entfernt platziert werden. Die Signalkabel sollten in einem Metallrohr verlegt werden und sich so weit wie möglich von den Eingangs-/Ausgangskabeln des Laufwerks entfernt befinden. Signalbzw. Steuerkabel müssen geschirmt sein. EMV-Störungen lassen sich weiter senken, wenn diese Kabel in Metallrohren verlegt werden können. Der Abstand zwischen den Metallrohren muss mindestens 20 cm betragen.		

7-14 Installation und Anschluss

7.7.3 Feldbusanschlüsse


Steuerleitungen, eingehende Stromkabel und Motorleitungen müssen separat installiert werden. Zwischen den Kabeln muss genügend Abstand gelassen werden, vor allem bei Parallelverlegung und Kabellängen von mehr als 50 Metern. Wenn Signalkabel und Stromkabel gemeinsam verlegt werden müssen, sollten die Kabel parallel zueinander verlaufen.



Im Allgemeinen sollten Steuerkabel geschirmte Kabel sein. Das Abschirmungsmetallnetz muss mithilfe von Kabelschellen mit dem Metallgehäuse des Antriebs verbunden werden.

7.7.4 Erdung

Unabhängige Erdungsstangen (am besten)

Hinweis:

- 1. Zur Verringerung des Erdwiderstands sollten Flachkabel verwendet werden, da Flachkabel im Vergleich mit Rundkabeln mit gleichem CSA-Wert eine geringere Hochfrequenzimpedanz aufweisen.
- 2. Wenn die Erdungsstangen verschiedener Geräte in einem System miteinander verbunden sind, bildet der Fehlerstrom eine Rauschquelle, die das ganze System stören kann. Daher

Installation und Anschluss 7-15

sollten die Erdungsstange des Antriebs von den Erdungsstangen anderer Geräte wie zum Beispiel Audiogeräten, Sensoren und Computern getrennt werden.

3. Erdungskabel sollten sich so weit wie möglich von den E/A-Kabeln des rauschempfindlichen Geräts entfernt befinden und so kurz wie möglich sein.

7.7.5 Fehlerstrom

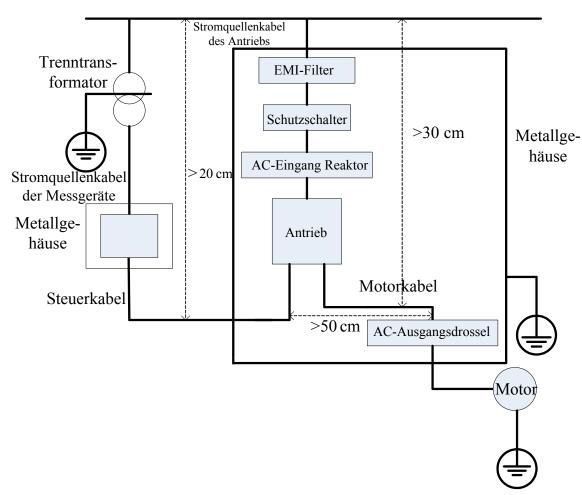
Fehlerstrom kann durch die Ein- und Ausgangskondensatoren und den Motor fließen. Der Fehlerstromwert hängt von der verteilten Kapazität der Kondensatoren und der Trägerwellenfrequenz ab. Der Fehlerstrom beinhaltet Erdkriechstrom und Fehlerstrom zwischen den Leitungen.

Erdkriechstrom:

Der Erdkriechstrom kann nicht nur in das Antriebssystem, sondern über Erdungskabel auch in andere Geräte fließen. Er kann Fehlauslösungen des Fehlerstrom-Trennschalters und der Relais bewirken. Je höher die Trägerwellenfrequenz des Antriebs und je länger das Motorkabel ist, desto höher ist der Fehlerstrom.

Unterdrückungsmethoden:

- Verringern der Trägerwellenfrequenz, dies kann jedoch zu lauteren Motorengeräuschen führen.
- Motorkabel sollten so kurz wie möglich sein.
- Der Antrieb und andere Geräte sollten Fehlerstrom-Trennschalter zum Schutz des Produkts vor Oberschwingungen höherer Ordnung und Überspannung-Fehlerstrom verwenden.


Fehlerstrom zwischen Leitungen:

Der durch die Verteilungskondensatoren des Laufwerks fließende Leitungsfehlerstrom kann die fehlerhafte Aktivierung des Thermorelais auslösen, insbesondere bei Antrieben mit einer Leistung unter 7,5 kW. Bei Kabellängen über 50 m kann das Verhältnis von Fehlerstrom zu Motornennstrom steigen, was leicht die fehlerhafte Auslösung des externen Thermorelais verursachen kann.

Unterdrückungsmethoden:

- Verringern der Trägerwellenfrequenz, dies kann jedoch zu lauteren Motorengeräuschen führen.
- Reaktor an der Ausgangsseite des Antriebs installieren

Um den Motor zuverlässig zu schützen, empfiehlt es sich, die Motortemperatur mithilfe eines Temperatursensors zu bestimmen und anstelle eines externen Thermorelais die Überlast-Schutzeinrichtung des Antriebs (elektronisches Thermorelais) zu verwenden.

7.7.6 Elektrische Installation des Antriebs

Hinweis:

- Das Motorkabel muss auf der Antriebsseite abgeschirmt und geerdet werden. Wenn möglich sollten Motor und Antrieb separat geerdet sein.
- Motorkabel und Steuerkabel sollten abgeschirmt sein. Die Abschirmung muss geerdet werden. Zur Verbesserung der Hochfrequenz-Störsicherheit sind Verwickelungen am Kabelende zu vermeiden.
- Zwischen Platten, Schrauben und dem Metallgehäuse des Antriebs ist für gute Leitfähigkeit zu sorgen. Verwenden Sie gezahnte Unterlegscheiben/Federscheiben und leitfähige Installationsplatten.

7.7.7 Anwendung eines Netzfilters

In Geräten, die starke elektromagnetische Störungen erzeugen können oder empfindlich für externe elektromagnetische Störungen sind, sollten Stromquellenfilter verwendet werden. Der Stromquellenfilter sollte ein bidirektionaler Tiefpassfilter sein, der nur Strom mit einer Frequenz von 50 Hz durchlässt und hochfrequenten Strom sperrt.

Funktionsweise des Netzfilters:

Der Netzfilter stellt sicher, dass die Ausrüstung die Anforderungen der EMV-Norm zu Leitungsemissionen und Leitungsempfindlichkeit erfüllen kann. Er kann auch die Strahlung der Geräte unterdrücken.

Häufige Fehler bei der Verwendung von Stromkabelfiltern:

1. Zu lange Stromkabel

Der Filter im Schaltschrank sollte sich in der Nähe des Stromquelleneingangs befinden. Die Stromkabel sollten so kurz wie möglich sein.

Installation und Anschluss 7-17

2. Die Eingangs- und Ausgangskabel des Netzfilters sind zu nah beieinander

Ein- und Ausgangskabel des Filters sollten so weit wie möglich voneinander entfernt sein, da es ansonsten zu einer Kopplung des hochfrequenten Rauschens zwischen den Kabeln kommen kann und der Filter umgangen wird. Dadurch wird der Filter unwirksam.

3. Schlechte Erdung des Filters

Das Gehäuse des Filters muss ordnungsgemäß am Metallgehäuse des Antriebs geerdet werden. Verwenden Sie zur sicheren Erdung eine spezielle Erdungsklemme am Gehäuse des Filters. Wenn Sie ein Kabel zur Verbindung des Filters mit dem Gehäuse verwenden, ist die Erdung für hochfrequente Störungen nutzlos. Bei hohen Frequenzen steigt auch die Impedanz des Kabels und der Bypass-Effekt sinkt. Der Filter sollte am Gehäuse des Geräts befestigt werden. Um einen guten Erdungskontakt zu gewährleisten, muss der Isolieranstrich zwischen Filtergehäuse und Einfassung entfernt werden.

Kapitel 8 Bedienung und einfacher Betrieb

Dieses Kapitel enthält Definitionen und Erläuterungen der Begriffe im Zusammenhang mit der Steuerung, dem Betrieb und dem Status des Wechselrichters. Lesen Sie es sorgfältig, da es den ordnungsgemäßen Betrieb gewährleistet.

8.1 Grundbegriffe

8.1.1 Regelungsmodus

Der Wechselrichter AC10 verfügt über die folgenden Regelungsmodi. Sensorlose Vektorregelung (F106 = 0), VVVF-Regelung (F106 = 2) und Vektorregelung 1 (F106 = 3)

8.1.2 Drehmomentausgleichs-Modus

Im VVVF-Regelungsmodus verfügt der Wechselrichter AC10 über vier Drehmomentausgleichsmodi:

Linearer Ausgleich (F137=0);

Quadratischer Ausgleich (F137=1);

Benutzerdefinierter Mehrpunktausgleich (F137=2);

Automatischer Drehmomentausgleich (F137=3)

8.1.3 Frequenzeinstellungsmodus

Zur Methode zur Einstellung der Lauffrequenz des Wechselrichters AC10 siehe F203 – F207.

8.1.4 Steuerungsmodus für Laufbefehle

Der Kanal des Wechselrichters für den Empfang von Steuerbefehlen (einschließlich Start, Stopp, Schrittbetrieb usw.) enthält 5 Modi:

- 0 Tastenfeldsteuerung
- 1. Klemmensteuerung;
- 2 Tastenfeld- + Klemmensteuerung
- 3. Modbus-Steuerung
- 4. Tastenfeld-, Klemmen- und Modbus-Steuerung

Die Steuerungsbefehlmodi können mit den Funktionscodes F200 und F201 gewählt werden.

8.1.5 Betriebszustand des Wechselrichters

Wenn der Wechselrichter eingeschaltet wird, befindet er sich in einem von vier Betriebszuständen:

Stoppstatus

Programmierstatus

Laufstatus

Fehleralarmstatus

Diese werden im Folgenden beschrieben:

Stoppstatus

Wenn der Wechselrichter eingeschaltet wird (und die Option zum automatischen Start nach dem Einschalten nicht aktiviert ist) oder wenn der Wechselrichter bis zum Stillstand ausläuft, befindet er sich im Stoppstatus, bis er einen Steuerungsbefehl erhält. In diesem Moment erlischt die Laufstatus-LED auf dem Tastenfeld und das Display zeigt denselben Inhalt wie vor der Abschaltung an.

Programmierstatus

Der Wechselrichter kann mit dem Bedienfeld in einen Status geschaltet werden, in dem die Funktionscodeparameter gelesen oder geändert werden können. Ein derartiger Status ist der Programmierstatus.

Die Funktionsparameter im Wechselrichter sind durch Nummern gekennzeichnet. Durch die Änderung dieser Parameter können Sie die verschiedenen Steuerungsmodi aktivieren.

8-2 Bedienung und einfacher Betrieb

Laufstatus

Wenn sich der Wechselrichter im Stoppstatus oder im fehlerfreien Status befindet, wechselte er nach dem Empfang eines Startbefehls in den Laufstatus.

Im fehlerfreien Laufstatus leuchtet die Laufstatus-LED auf dem Bedienfeld.

Fehleralarmstatus

Der Status des Wechselrichters, in dem der Fehler aufgetreten ist, sowie ein Fehlercode werden angezeigt.

Die Fehlercodes sind im Wesentlichen: OC, OE, OL1, OL2, OH, LU, PF1 und PF0 mit den Bedeutungen "Überstrom", "Überspannung", "Wechselrichterüberlastung", "Motorüberlastung", "Überhitzung", "unzureichende Eingangsspannung,", "Ausfall der Eingangsphase" bzw. "Ausfall der Ausgangsphase".

Hinweise zur Fehlerbehebung finden Sie in Kapitel 10, "Fehlerbehebung".

8.2 Bedienfeld und Bedienmethode

Das Bedienfeld (Tastenfeld) ist eine standardmäßige Komponente für die Konfiguration des Wechselrichters AC10. Über das Bedienfeld können Sie die Parameter des Wechselrichters einstellen, seinen Status überwachen und den Betrieb steuern. Das Tastenfeld sowie das Display befinden sich auf dem Bedienfeld, das im Wesentlichen aus drei Abschnitten besteht:

Datenanzeigebereich,

Statusanzeigebereich

und Tastenfeld

Sie müssen mit den Funktionen und der Verwendung des Bedienfelds vertraut sein. Bitte lesen Sie dieses Handbuch vor der Inbetriebnahme sorgfältig durch.

8.2.1 Methode zur Verwendung des Bedienfelds

8.2.2 Einstellen der Parameter mit dem Bedienfeld

Die Einstellung der Parameter mit dem Bedienfeld erfolgt über eine dreistufige Menüstruktur, die das bequeme und einfache Suchen und Ändern der Funktionscodeparameter ermöglicht.

Dreistufiges Menü:

Funktionscodegruppe (erste Menüebene)

Funktionscode (zweite Menüebene)

eingestellte Werte der Funktionscodes (dritte Menüebene)

8.2.3 Einstellen der Parameter

Um die volle Leistung des Wechselrichters nutzen zu können, ist die korrekte Einstellung der Parameter erforderlich. Der folgende Abschnitt ist eine Einführung zur Einstellung der Parameter mithilfe des Bedienfelds.

Vorgehensweisen:

- i. Drücken Sie die Taste "M", um das Programmiermenü aufzurufen.
- ii. Drücken Sie die Taste "O". Die LED DGT erlischt. Drücken Sie die Taste "▲" oder "▼". Dadurch gelangen Sie zur ersten Zahl nach dem F, wodurch sich die Funktionscodegruppe ändert. Als erste Ziffer hinter dem F wird die aktuelle Funktionsgruppe angezeigt, d. h., es ist ein Funktionscode der Form F1×× zu sehen. Danach werden die Basisparameter F100 F160 ausgewählt.
- iii. Drücken Sie die Taste "O" erneut. Die LED DGT leuchtet auf. Drücken Sie ▲ und ▼, um innerhalb der ausgewählten Funktionsgruppe nach oben bzw. nach unten durch die Funktionscodes zu blättern. Drücken Sie die Taste "E", um den Wert 50,00 anzuzeigen. Drücken Sie dann ▲ und ▼, um die gewünschte Frequenz einzustellen.
- iv. Drücken Sie die Taste "E", um die Änderung abzuschließen.

8.2.4 Wechseln und Anzeigen der Statusparameter

Im Stoppstatus und im Laufstatus zeigen die LED-Anzeigen des Wechselrichters dessen Statusparameter an. Die angezeigten Parameter können über die Funktionscodes F131 und F132 ausgewählt und festgelegt werden. Mit der Taste "M" können Parameter des Stoppstatus oder des Laufstatus wiederholt umgeschaltet und angezeigt werden. Im Folgenden wird das Anzeigen der Parameter im Stoppstatus und im Laufstatus beschrieben.

8.2.5 Umschalten der im Stoppstatus angezeigten Parameter

Im Stoppstatus besitzt der Wechselrichter fünf Parameter, die nacheinander mit den Tasten "M" und "O" umgeschaltet und angezeigt werden können. Es werden folgende Parameter angezeigt: Tastenfeld-Schrittbetrieb, Zieldrehzahl, PN-Spannung, PID-Feedbackwert und Temperatur Bitte beachten Sie die Beschreibung des Funktionscodes F132.

8.2.6 Umschalten der im Laufstatus angezeigten Parameter

Im Laufstatus besitzt der Wechselrichter acht Parameter, die nacheinander mit der Taste "M" umgeschaltet und angezeigt werden können. Es werden folgende Parameter angezeigt: Ausgangsdrehzahl, Ausgangsstrom, Ausgangsspannung, PN-Spannung, PID-Feedbackwert, Temperatur, Zählerwert und Lineargeschwindigkeit. Bitte beachten Sie die Beschreibung des Funktionscodes F131.

8.2.7 Messung der Motorparameter

Vor der Auswahl der Betriebsart der Vektorregelung und des automatischen Drehmomentausgleichs (F137 = 3) des VVVF-Regelungsmodus müssen die Parameter entsprechend den Angaben auf dem Typenschild des Motors eingegeben werden. Der Wechselrichter passt die Standardwiderstandsparameter des Motorstators entsprechend diesen auf dem Typenschild angegebenen Parametern an. Um eine bessere Regelungsleistung zu erzielen, können Sie den Wechselrichter starten, um die Widerstandsparameter des Motorstators zu messen und so präzise Parameter des gesteuerten Motors zu ermitteln.

Die Motorparameter können mit dem Funktionscode F800 feinjustiert werden.

Beispiel: Angenommen, auf dem Typenschild des gesteuerten Motors sind folgende Parameter angegeben: Anzahl der Motorpole: 4; Nennleistung: 7,5 kW; Nennspannung: 400 V; Nennstrom: 15,4 A; Nennfrequenz: 50,00 Hz; und Nenndrehzahl: 1440 U/min. Die Messung der Parameter erfolgt wie folgendermaßen beschrieben:

Stellen Sie die Werte von F801 bis F805 entsprechend den oben angegebenen Motorparametern korrekt ein: F801 = 7.5, F802 = 400, F803 = 15.4, F804 = 4 und F805 = 1440.

- 1. Um die dynamische Regelungsleistung des Wechselrichters zu gewährleisten, setzen Sie F800 = 1, d. h. wählen Sie Abstimmung bei laufendem Motor aus. Stellen Sie sicher, dass der Motor von der Last getrennt ist. Drücken Sie die Taste "I" auf dem Tastenfeld. Der Wechselrichter zeigt die Meldung "TEST" an und optimiert die Motorparameter in zwei Stufen. Danach beschleunigt der Motor entsprechend der mit F114 eingestellten Hochlaufzeit und hält diese Drehzahl über einen bestimmten Zeitraum. Danach sinkt die Drehzahl des Motors entsprechend der mit F115 eingestellten Zeit auf 0 ab. Nach Abschluss der automatischen Überprüfung werden die relevanten Parameter des Motors in den Funktionscodes F806 F809 gespeichert und F800 wird automatisch auf 0 gesetzt.
- 2. Wenn der Motor nicht von der Last getrennt werden kann, wählen Sie F800 = 2, d. h. Abstimmung bei stehendem Motor. Drücken Sie die Taste "I". Der Wechselrichter zeigt die Meldung "TEST" an und optimiert die Motorparameter in zwei Stufen. Der Statorwiderstand, der Rotorwiderstand und die Streuinduktivität des Motors werden in den Funktionscodes F806 bis F808 gespeichert und der Funktionscode F800 wird automatisch auf 0 gesetzt. Sie können die Gegeninduktivität auch gemäß den tatsächlichen Motorbedingungen manuell berechnen und eingeben.

8 - 4 Bedienung und einfacher Betrieb

8.2.8 Einfacher Lauf

Tabelle 8-1 Kurze Einführung in die Verfahren zum Betrieb des Wechselrichters

Verfahren	Vorgehensweise	Referenz
Installation und Betriebsumgebung	Installieren Sie den Wechselrichter an einem Ort, der den technischen Spezifikationen und Anforderungen des Produkts entspricht. Überprüfen Sie vor allem, ob die Anforderungen hinsichtlich Umgebungsbedingungen (Temperatur, Luftfeuchtigkeit usw.) und Wärmestrahlung des Wechselrichters erfüllt werden.	Siehe Kapitel 1, 2 und 3.
Verdrahtung des Wechselrichters	Verdrahtung von Eingangs- und Ausgangsklemmen des Hauptstromkreises; Verdrahtung der Erdung; Verdrahtung der Steuerklemmen zum Ändern von Werten, Analogklemmen und Kommunikationsschnittstellen usw.	Siehe Kapitel 7 und 8.
Prüfung vor dem Einschalten	Stellen Sie sicher, dass die Spannung der eingehenden Stromversorgung korrekt ist; dass die eingehende Stromversorgung mit einem Trennschalter angeschlossen ist; dass der Wechselrichter korrekt und zuverlässig geerdet wurde; dass das Netzkabel korrekt an die Eingangsklemmen für die Spannungsversorgung angeschlossen ist (Klemmen R/L1, S/L2 bei einphasiger Stromversorgung und R/L1, S/L2 und T/L3 bei 3-phasiger Stromversorgung); dass die Ausgangsklemmen U, V und W des Wechselrichters an den Motor angeschlossen sind; dass die Steuerklemmen korrekt verdrahtet sind; dass alle externen Schalter korrekt voreingestellt sind und dass Motor von der mechanischen Last getrennt ist.	Kapitel 7.
Prüfung unmittelbar nach Anliegen der Spannung	Prüfen Sie den Wechselrichter auf ungewöhnliche Geräusche und ungewöhnlichen Geruch. Stellen Sie sicher, dass im Display des Bedienfelds keine Fehleralarmmeldung angezeigt wird. Im Falle einer Anomalie schalten Sie die Stromversorgung sofort aus.	Siehe Kapitel 8.
Eingeben der Parameter auf dem Motortypenschild und Messen der Motorparameter	um die elektrischen Parameter des gesteuerten Motors präzise zu ermitteln. Trennen Sie den Motor vor der Abstimmung vollständig von der mechanischen Last. Die Parameter dürfen nicht gemessen werden, wenn sich der Motor im Laufstatus befindet.	Siehe Beschreibung der Parametergruppe F800 – F830
Einstellen der Laufsteuerungsparameter	Stellen Sie die Parameter des Wechselrichters und des Motors korrekt ein, darunter vor allem die Zielfrequenz, die oberen und unteren Frequenzgrenzwerte, die Hochlauf- und Auslaufzeit, den Richtungssteuerungsbefehl usw. Sie können den entsprechenden Laufsteuermodus entsprechend den tatsächlichen Anwendungen auswählen.	Siehe Beschreibung der Parametergruppe.
Prüfung ohne Last	Starten Sie den Wechselrichter bei von der Last getrenntem Motor mithilfe des Tastenfelds oder der Steuerklemme. Überprüfen und bestätigen Sie den Laufstatus des Antriebs. Motorstatus: stabiler und normaler Lauf, richtige Drehrichtung, normaler Hochlauf/Auslauf, frei von ungewöhnlichen Schwingungen, und ungewöhnlichen Geräuschen Wechselrichterstatus: normale Anzeige der Daten auf dem Bedienfeld, normaler Lauf des Lüfters, normale Auslösesequenz des Relais, frei von Anomalien wie Vibrationen und Geräuschen. Im Falle einer Anomalie schalten Sie den Wechselrichter sofort aus und überprüfen Sie ihn.	Siehe Kapitel 8.
Prüfung unter Last	Schließen Sie nach dem erfolgreichen Testlauf ohne Last das Antriebssystem ordnungsgemäß an die Last an. Starten Sie den Wechselrichter mithilfe des Tastenfelds oder der Steuerklemme und erhöhen sie die Last schrittweise. Wenn die Last 50 % und 100 % erreicht, lassen Sie den Wechselrichter eine Weile bei dem entsprechenden Wert laufen und überprüfen Sie das System auf normale Funktion. Führen Sie eine allgemeine Prüfung des Wechselrichters auf Unregelmäßigkeiten durch. Im Falle einer Anomalie schalten Sie den Wechselrichter sofort aus und überprüfen Sie ihn.	
Prüfung im Betrieb	Prüfen Sie den Motor auf stabilen Lauf, auf korrekte Drehrichtung, auf ungewöhnliche Schwingungen oder Geräusche beim Lauf des Motors, auf stabilen Hochlauf bzw. Auslauf. Überprüfen Sie den Wechselrichter auf korrekten Ausgangsstatus und korrekte Anzeige auf dem Bedienfeld, auf den normalen Lauf des Lüfters sowie auf ungewöhnliche Schwingungen oder Geräusche. Im Falle einer Anomalie schalten Sie den Wechselrichter sofort aus, trennen Sie ihn von der Stromversorgung und überprüfen Sie ihn.	

8.3 Darstellung der Grundfunktionen

Darstellung der Grundfunktionen des Wechselrichters: Im Folgenden werden verschiedene grundlegende Steuerungsprozesse am Beispiel eines 7,5-kW-Wechselrichters gezeigt, der einen 7,5-kW-Dreiphasenstrom-Asynchronmotor antreibt.

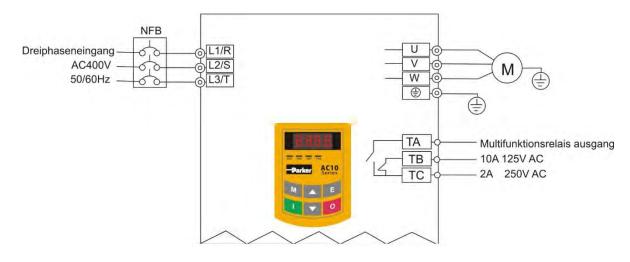


Abbildung 8-1 Schaltplan 1

Auf dem Typenschild des Motors sind folgende Parameter angegeben: 4 Pole; Nennleistung: 7,5 kW; Nennspannung: 400 V; Nennstrom: 15,4 A; Nennfrequenz: 50,00 Hz; Nenndrehzahl: 1440 U/min

8.3.1 Einstellen der Frequenz, Starten, Vorwärts- und Rückwärtslauf sowie Stoppen mit dem Bedienfeld

- i. Verbinden Sie die Kabel gemäß Tabelle 8-1. Nachdem die Verkabelung erfolgreich überprüft wurde, schalten Sie den Wechselrichter ein.
- ii. Drücken Sie die Taste "M", um das Programmiermenü aufzurufen.
- iii. Geben Sie die Parameter des Motors ein.

Funktionscode	Werte
F800	1(2)
F801	7,5
F802	400
F803	15,4
F805	1440

Drücken Sie die Taste "I", um die Parameter des Motors automatisch abzustimmen. Nach Abschluss der Abstimmung wird der Motor gestoppt und die entsprechenden Parameter werden in F806 bis F809 gespeichert. Einzelheiten zur Abstimmung der Motorparameter finden Sie im Abschnitt "Messung der Motorparameter" dieses Handbuchs. (Hinweis: F800 = 1 steht für Abstimmung bei laufendem Motor, F800 = 2 für Abstimmung bei stehendem Motor. Bei der Abstimmung bei laufendem Motor muss der Motor von der Last getrennt sein.)

iv. Stellen Sie die Funktionsparameter des Wechselrichters ein:


Funktionscode	Werte
F111	50,00
F200	0
F201	0
F202	0
F203	0

8-6 Bedienung und einfacher Betrieb

- v. Drücken Sie die Taste "I", um den Wechselrichter zu starten.
- vi. Im Lauf kann die Stromfrequenz des Wechselrichters durch Drücken der Tasten ▲ oder ▼ geändert werden.
- vii. Drücken Sie einmal die Taste "O". Der Motor läuft bis zum Stillstand aus.
- viii. Schalten Sie den Belüftungsschalter und den Wechselrichter aus.

8.3.2 Einstellen der Frequenz mithilfe des Bedienfelds, Starten, Vorwärts- und Rückwärtslauf sowie Stoppen des Wechselrichters mit den Steuerklemmen

i. Verbinden Sie die Kabel gemäß Abbildung 8-2. Nachdem die Verkabelung erfolgreich überprüft wurde, schalten Sie den Belüftungsschalter und den Wechselrichter ein.

- ii. Drücken Sie die Taste "M", um das Programmiermenü aufzurufen.
- iii. Ermitteln Sie die Parameter des Motors. Die Vorgehensweise entspricht der im Beispiel 1. (Erläuterungen zur Abstimmung des Motors siehe Abschnitt 8.3.1.)
- iv. Stellen Sie die Funktionsparameter des Wechselrichters ein:

Funktionscode	Werte
F111	50,00
F203	0
F208	1

- v. Schließen Sie den Schalter DI3. Der Wechselrichter startet den Vorwärtslauf.
- vi. Im Lauf kann die Stromfrequenz des Wechselrichters durch Drücken der Tasten ▲ oder ▼ geändert werden.
- vii. Schalten Sie während des Laufs den Schalter DI3 aus. Schließen Sie dann den Schalter DI4 und die Laufrichtung des Motors ändert sich. (Hinweis: Legen Sie die Totzeit zwischen Vorwärts- und Rückwärtslauf mit F120 entsprechend der Last fest. Bei einem zu geringen Wert kann der OC-Schutz des Wechselrichters ausgelöst werden.)
- viii. Schalten Sie die Schalter DI3 und DI4 aus. Der Motor läuft bis zum Stillstand aus.
- ix. Schalten Sie den Trennschalter und den Wechselrichter aus.

Bedienung und einfacher Betrieb 8-7

8.3.3 Schrittbetrieb mithilfe des Bedienfelds

- i. Verbinden Sie die Kabel gemäß Abbildung 8-1. Nachdem die Verkabelung erfolgreich überprüft wurde, schalten Sie den Trennschalter und den Wechselrichter ein.
- ii. Drücken Sie die Taste "M", um das Programmiermenü aufzurufen.
- iii. Ermitteln Sie die Parameter des Motors. Die Vorgehensweise entspricht der im Beispiel 1. (Erläuterungen zur Abstimmung des Motors siehe Abschnitt 8.3.1.)
- iv. Stellen Sie die Funktionsparameter des Wechselrichters ein:

Funktionscode	Werte
F124	5,00
F125	30
F126	30
F132	1
F202	0

- v. Halten Sie die Taste "I" gedrückt, bis der Motor bis auf die Schrittgeschwindigkeit hochgelaufen ist, und behalten Sie den Schrittbetriebsstatus bei.
- vi. Lassen Sie die Taste "I" los. Der Motor läuft aus bis zum Stillstand des Schrittbetriebs.
- vii. Schalten Sie den Trennschalter und den Wechselrichter aus.

8.3.4 Einstellen der Frequenz mithilfe der Analogklemmen und Steuern des Betriebs mit den Steuerklemmen

i. Verbinden Sie die Kabel gemäß Abbildung 8-3. Nachdem die Verkabelung erfolgreich überprüft wurde, schalten Sie die Netzspannung und den Wechselrichter ein. Hinweis: Zum Einstellen der externen Analogsignale kann ein Potentiometer 2K – 5K verwendet werden. Bei höheren Anforderungen an die Präzision werden ein präzises Mehrgangpotentiometer und abgeschirmte Kabel für die Kabelverbindungen empfohlen, wobei das nahe Ende der Abschirmungsschicht zuverlässig geerdet sein muss.

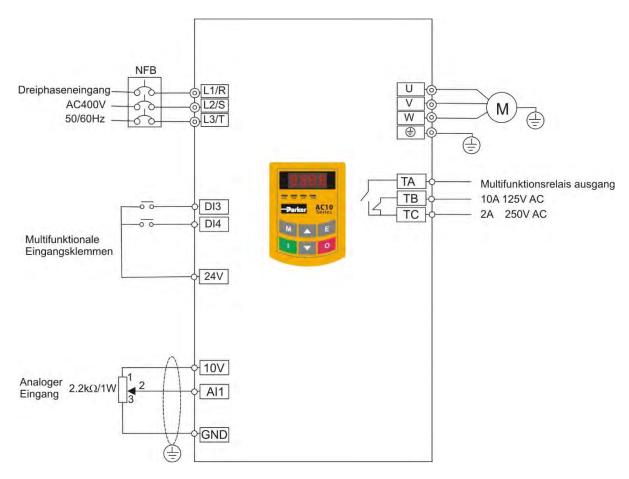
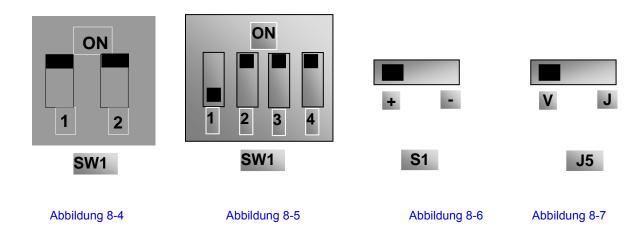


Abbildung 8-3 Schaltplan 3

- ii. Drücken Sie die Taste "M", um das Programmiermenü aufzurufen.
- iii. Ermitteln Sie die Parameter des Motors. Die Vorgehensweise entspricht der im Beispiel 1. (Erläuterungen zur Abstimmung des Motors siehe Abschnitt 8.3.1.)
- iv. Stellen Sie die Funktionsparameter des Wechselrichters ein:

Funktionscode	Werte
F203	1
F208	1

Baugröße 1-5 bis 22kW


v. Wie in Abbildung 4-4 gezeigt, befindet sich neben dem Steuerklemmenblock ein roter zweistelliger Kodierungsschalter SW1. Dieser dient zur Auswahl des Spannungssignals (0 – 5 V/0 – 10 V) oder des Stromsignals der analogen Eingangsklemme Al2. Standardwert ist der aktuelle Kanal. Wählen Sie in der eigentlichen Anwendung mit F203 den analogen Eingangskanal. Schalten Sie, wie

Bedienung und einfacher Betrieb 8-9

in der Abbildung gezeigt, die Schalter 1 und 2 auf ON und wählen Sie die Drehzahlregelung mit 0 – 20 mA Stromstärke. Eine Aufstellung weiterer Schalterzustände und Drehzahlregelungsmodi finden Sie in **Tabelle 8-2**.

Baugröße 6-11 bis 30 - 150kW

- vi. Es ist ein roter vierstelliger Codierung Schalter SW1 in der Nähe der Steuerklemmenleiste oberhalb 30 kW-Wechselrichter, wie in Figur 8-5 gezeigt. Die Funktion der Codierschalter ist es, den Eingangsbereich (0 bis 5 V / 0 bis 10 V / 0 bis 20 mA) des Analogeingangsklemme Al1 und Al2 auswählen. In der tatsächlichen Anwendung den analogen Eingangskanal durch F203. Al1 Kanal Standardwert ist 0 ~ 10V, Al2 Kanal Standardwert ist 0 ~ 20mA. Ein weiterer Schalter Staaten und die Art der Regelgeschwindigkeit sind als Tabelle 8-3.
- vii. Schließen Sie den Schalter DI3. Der Motor startet den Vorwärtslauf.
- viii. Das Potentiometer kann während des Laufs eingestellt werden und die Stromfrequenz des Wechselrichters kann geändert werden.
- ix. Schalten Sie während des Laufs den Schalter DI3 aus. Schließen Sie dann den Schalter DI4 und die Laufrichtung des Motors ändert sich.
- x. Schalten Sie die Schalter DI3 und DI4 aus. Der Motor läuft bis zum Stillstand aus.
- xi. Schalten Sie den Belüftungsschalter und den Wechselrichter aus.
- xii. Über die Analogausgangsklemme AO1 kann ein Spannungs- und Stromsignal ausgegeben werden. Der Wahlschalter ist J5 (siehe Abbildung 8-7). Das Ausgangsverhältnis ist in Tabelle 8-4 dargestellt.

Einstellen des Kodierschalters und der Parameter im analogen Drehzahlregelungsmodus
Tabelle 8-2

F203 = 2, Kanal Al2 ist ausgewählt			F203 = 1, Kanal Al1 ist ausgewählt	
Kodierschalter SW1		S1 Kippschalter		
Kodierschalter Kodierschalter Analogeingang 1 Al2-Signal		+	-	
OFF	OFF	0~5V voltage	0~10V voltage	10~10V voltage
OFF	ON	0~10V voltage		
ON	ON	0~20mA current		

8 - 10 Bedienung und einfacher Betrieb

Tabelle 8-3

Die Einstellung der Codierschalter und Parameter im Modus der analogen Drehzahlregelung

Set F203 to 1, to select channel Al1			Set F203 to 2, to select channel Al2			
Kodierschalter SW1		Toggle	Analog signal	Coding Switch SW1		
Switch 1	Switch 3	switch S1	Analog signal range	Switch 2	Switch 4	Analog signal range
OFF	OFF	+	0∼5V voltage	OFF	OFF	0∼5V voltage
OFF	ON	+	0∼10V voltage	OFF	ON	0∼10V voltage
ON	ON	+	0~20mA current	ON	ON	0~20mA current
OFF	OFF	-	Reserved			
OFF	ON	-	-10~10V voltage			
ON	ON	-	Reserved			

ON verweist auf Einschalten des Codierschalters nach oben, bezieht sich auf die Schalt Codierschalter auf den Grund OFF

Tabelle 8-4 Die Beziehung zwischen AO1 und J5 und F423

Auggang AO1 Einstellung von F423				
Ausgang AO1		0	1	2
J5	V	0 – 5 V	0 – 10 V	Reserviert
JO	I	Reserviert	0 – 20 mA	4 – 20 mA

Kapitel 9 Funktionsparameter

9.1 Basisparameter

Einstellbereich: 0 – 9999	Werkseinstellung: 8

Wenn F107 = 1 die Eingabe eines gültigen Passworts verlangt, müssen Sie zum Ändern von Parametern nach dem Einschalten oder der Rückstellung das korrekte Benutzerpasswort eingeben. Andernfalls ist keine Parametereinstellung möglich und die Meldung "Err1" wird angezeigt.

Entsprechender Funktionscode: F107 Passwort aktiv oder nicht F108 Einstellen des Benutzerpassworts

F102 Nennstrom des Wechselrichters (A)	Werkseinstellung: Modellabhängig
F103 Leistung des Wechselrichters (kW)	Werkseinstellung: Modellabhängig

Nennstrom und Nennleistung können nur angezeigt, aber nicht geändert werden.

F105 Softwareversion		Werkseinstellung: Modellabhängig
----------------------	--	-------------------------------------

Die Softwareversion kann nur angezeigt, aber nicht geändert werden.

D F106 Steuermodus	Einstellbereich: 0: Sensorlose Vektorregelung (SVC); 1: Reserviert; 2: V/F 3: Vektorregelung 1 6: PMSM sensorlose Vektorregelung	Werkseinstellung: 2
-----------------------	--	---------------------

nsorlose Vektorregelung ist für Anwendungen mit hohen Leistungsanforderungen geeignet. Hierbei kann ein Wechselrichter nur einen Motor antreiben.

- **2: Die V/F**-Regelung ist für durchschnittliche Anforderungen an die Regelungspräzision oder Szenarien geeignet, in denen ein Wechselrichter mehrere Motoren antreibt.
- **3: Vektorregelung 1** ist die automatische Drehmomenterhöhung mit derselben Funktion F137 = 3. Beim Ermitteln der Motorparameter muss der Motor nicht von der Last getrennt werden. Hierbei kann ein Wechselrichter nur einen Motor antreiben.
- **6: PMSM sensorlose Vektorregelung** ist für die Anwendung von High-Performance-Anforderung. Ein Wechselrichter kann nur ein Motor fahren. Jetzt 3ph 400V 0,75 kW-Wechselrichter 90kw können PMSM fahren.

Hinweis:

- Bevor der Wechselrichter im sensorlosen Vektorregelungsmodus läuft, müssen die Motorparameter ermittelt werden.
- Bei der sensorlosen Vektorregelung kann ein Wechselrichter nur einen Motor antreiben und die Leistung des Motors sollte ungefähr der Leistung des Wechselrichters entsprechen. Andernfalls wird die Regelungsleistung herabgesetzt oder das System funktioniert nicht ordnungsgemäß.
- Der Betreiber kann die Motorparameter manuell entsprechend den Angaben des Herstellers eingeben.
- •Mit den Standardparametern des Wechselrichters lässt sich in der Regel ein Normalbetrieb des Motors, jedoch nicht die beste Regelungsleistung erzielen. Ermitteln Sie daher die Parameter des Motors, ehe der Wechselrichter im sensorlosen Vektorregelungsmodus läuft.

9-2 Funktionsparameter

F107	Passwort aktiv oder nicht	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 0
F108	Einstellen des Benutzerkennworts	Einstellbereich: 0 – 9999	Mfr's value: 8

Wenn F107 auf 0 gesetzt ist, können die Funktionscodes ohne Passworteingabe geändert werden.

Wenn F107 auf 1 gesetzt ist, können die Funktionscodes erst nach Eingabe des Benutzerpassworts mit F100 geändert werden.

Sie können das Benutzerpasswort ändern. Die Vorgehensweise entspricht der zum Ändern anderer Parameter.

Geben Sie in F100 den Wert von F108 ein, um das Benutzerpasswort freizugeben.

Hinweis: Wenn der Passwortschutz aktiv ist und das Benutzerpasswort nicht eingegeben wird, zeigt F108 den Wert Null an.

F109	Startfrequenz (Hz)	Einstellbereich: 0,00 – 10,00	Standardwert: 0,00
F110	Haltezeit der Startfrequenz (s)	Einstellbereich: 0,0 – 999,9	Standardwert: 0,0

Der Wechselrichter beginnt, mit der Startfrequenz zu laufen. Wenn die Zielfrequenz unter der Startfrequenz liegt, ist F109 ungültig.

Der Wechselrichter beginnt, mit der Startfrequenz zu laufen. Nachdem er für die in F110 eingestellt Zeitdauer mit der Startfrequenz gelaufen ist, beschleunigt er auf die Zielfrequenz. Die Haltezeit ist nicht in der Hochlauf- bzw. Auslaufzeit enthalten.

Die Startfrequenz wird nicht durch die mit F112 eingestellte Minimalfrequenz beschränkt. Wenn die mit F109 eingestellte Startfrequenz unter der mit F112 eingestellten Minimalfrequenz liegt, startet der Wechselrichter entsprechend den mit F109 und F110 festgelegten Einstellungsparametern. Wenn der Wechselrichter gestartet wurde und normal läuft, wird die Frequenz durch die mit F111 und F112 eingestellten Werte begrenzt.

Die Startfrequenz muss unter der mit F111 festgelegten Maximalfrequenz liegen.

Hinweis: Wenn Flycatching aktiv ist, sind F109 und F110 inaktiv.

F111 Maximalfrequenz (Hz)	Einstellbereich: F113 – 590,0	Standardwert: 50,00
F112 Minimalfrequenz (Hz)	Einstellbereich: 0,00 – F113	Standardwert: 0,50

Die Maximalfrequenz wird mit F111 festgelegt.

Die Minimalfrequenz wird mit F112 festgelegt.

Der Einstellwert der Minimalfrequenz muss unter der mit F113 festgelegten Zielfrequenz liegen.

Der Wechselrichter beginnt, mit der Startfrequenz zu laufen. Wenn während des Laufs des Wechselrichters die eingegebene Frequenz unter der Minimalfrequenz liegt, läuft der Wechselrichter mit der Minimalfrequenz, bis er stoppt oder die eingegebene Frequenz über der Minimalfrequenz liegt.

Die Minimal- und Maximalfrequenz muss entsprechend den Parametern auf dem Typenschild und den Laufbedingungen des Motors eingestellt werden. Der Motor darf nicht über längere Zeit bei zu niedriger Frequenz betrieben werden, da er ansonsten durch Überhitzung beschädigt werden kann.

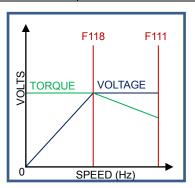
E442 Zielfreguenz (Uz)	Einstellbereich:	Standardwert:
F113 Zielfrequenz (Hz)	F112 – F111	50,00

Dieser Wert gibt die voreingestellte Frequenz an. Bei der Tastenfeld- oder Klemmendrehzahlregelung läuft der Wechselrichter nach dem Start automatisch mit dieser Drehzahl.

F114	Erste Hochlaufzeit (s)		
F115	Erste Auslaufzeit (s)		
F116	Zweite Hochlaufzeit (s)		
F117	Zweite Auslaufzeit (s)	Einstellbereich:	Standardwert: Modellabhängig
F277	Third Acceleration Time (S)	0,1 – 3000	Modellabriarigig
F278	Third Deceleration Time (S)		
F279	Fourth Acceleration Time (S)		
F280	Fourth Deceleration Time (S)		

F119 wird zum Einstellen der Referenz für die Hochlauf- bzw. Auslaufzeit verwendet.

Die Hochlauf- bzw. Auslaufzeit kann mithilfe der multifunktionalen Digitaleingangsklemmen F316 – F323 und durch Verbinden der Klemme DI mit der Klemme CM gewählt werden. Bitte beachten Sie die Anweisungen zu den multifunktionalen Eingangsklemmen.


Hinweis: Wenn Flycatching aktiv ist, sind die Hochlauf- bzw. Auslaufzeit, Minimalfrequenz und Zielfrequenz inaktiv. Nachdem das Flycatching beendet wurde, läuft der Wechselrichter gemäß der Hochlauf- bzw. Auslaufzeit mit der Zielfrequenz.

F118 Basisfrequenz (Hz)	Einstellbereich: 15,00 – 590,0	Standardwert: 50,00 Hz
-------------------------	-----------------------------------	---------------------------

Die Basisfrequenz ist die endgültige Frequenz der VVVF-Kurve sowie die Mindestfrequenz entsprechend der höchsten Ausgangsspannung.

Wenn die Lauffrequenz unter diesem Wert liegt, hat der Wechselrichter einen Ausgang mit konstantem Drehmoment. Wenn die Lauffrequenz über diesem Wert liegt, hat der Wechselrichter einen Ausgang mit konstanter Leistung.

Hinweis: Während des Flycatching-Prozesses ist die Basisfrequenz inaktiv. Nach Abschluss des Flycatching ist dieser Funktionscode aktiv.

F119 Die Referenz für die Hochlaufbzw. Auslaufzeit	Einstellbereich: 0: 0 – 50,00 Hz 1: 0 – F111	Standardwert: 0
--	--	-----------------

Wenn F119 = 0, ist die Hochlauf- bzw. DAuslaufzeit die Zeit, die der Wechselrichter benötigt, um von 0 Hz auf 50 Hz hochzulaufen bzw. von 50 Hz auf 0 Hz auszulaufen.

Wenn F119 = 1, ist die Hochlauf- bzw. Auslaufzeit die Zeit, die der Wechselrichter benötigt, um von 0 Hz auf die Maximalfrequenz hochzulaufen bzw. von der Maximalfrequenz auf 0 Hz auszulaufen.

F120 Totzeit für den Wechsel von Vorwärts- zu Rückwärtslauf (s)	Einstellbereich: 0,0 – 3000	Standardwert: 0,0
---	-----------------------------	-------------------

Innerhalb der Totzeit für den Wechsel von Vorwärts- zu Rückwärtslauf wird diese Latenzzeit abgebrochen und der Wechselrichter ändert unmittelbar nach Erhalt des Stoppsignals die Laufrichtung. Diese Funktion ist für alle Drehzahlregelungsmodi außer dem automatischen Zyklus geeignet.

Diese Funktion kann die Auswirkung eines Laufrichtungswechsels dämpfen.

Hinweis: Während des Flycatching-Prozesses ist F120 inaktiv. Nach Abschluss des Flycatching ist dieser Funktionscode aktiv.

9-4 Funktionsparameter

F122 Rückwärtslauf verboten	Einstellbereich: 0: Inaktiv;	Standardwert: 0
	1: Aktiv	

Wenn F122 = 1, läuft der Wechselrichter unabhängig vom Zustand der Klemmen und den mit F202 eingestellten Parametern nur vorwärts.

Der Wechselrichter läuft nicht rückwärts und ein Wechsel zwischen Vorwärts- und Rückwärtslauf ist verboten. Wenn das Signal zum Rückwärtslauf gegeben wird, wird der Wechselrichter gestoppt.

Wenn die Sperre des Rückwärtslaufs aktiv ist (F202 = 1), hat der Wechselrichter keinen Ausgang.

Wenn F122 = 1, F613 = 1 und F614 ≥ 2 und der Wechselrichter den Befehl zum Vorwärtslauf erhält, während der Motor rückwärts läuft, regelt der Wechselrichter die Rückwärtslauffrequenz auf 0,0 Hz und wechselt dann entsprechend den eingestellten Parameterwerten in den Vorwärtslauf.

Wenn die Sperre des Rückwärtslaufs aktiv ist (F202 = 1), hat der Wechselrichter unabhängig davon, ob Flycatching aktiv ist, keinen Ausgang.

Wenn F122 = 1, F613 = 1 und F614 ≥ 2 und der Wechselrichter den Befehl zum Vorwärtslauf erhält, während der Motor antriebslos rückwärts läuft und der Wechselrichter den Rückwärtslauf erkennt sowie sich auf die Motordrehzahl abstimmen kann, regelt der Wechselrichter die Rückwärtslauffrequenz auf 0,0 Hz und wechselt dann entsprechend den eingestellten Parameterwerten in den Vorwärtslauf.

F123 Negative Frequenzen sind bei kombinierter Drehzahlregelung aktiv.	0: Inaktiv; 1: Aktiv	0
--	-------------------------	---

Wenn bei kombinierter Drehzahlregelung die Lauffrequenz negativ und F123 = 0 ist, läuft der Wechselrichter mit 0 Hz. Wenn F123 = 1, läuft der Wechselrichter mit dieser Frequenz rückwärts. (Diese Funktion wird durch F122 gesteuert.)

F12	24 Schrittbetriebsfrequenz (Hz)	Einstellbereich: F112 – F111	Standardwert: 5,00 Hz	
F12	25 Schrittbetrieb-Hochlaufzeit (s)	Einstellbereich:	Standardwert: Modellabhängig	
F12	26 Schrittbetrieb-Auslaufzeit (s)	0,1 – 3000		

Es werden zwei Schrittbetriebsarten unterschieden: Tastenfeld-Schrittbetrieb und Klemmenschrittbetrieb. Der Tastenfeld-Schrittbetrieb ist nur im Stoppstatus aktiv. (F132 einschließlich

der angezeigten Elemente des Tastenfeld-Schrittbetriebs müssen gesetzt sein.) Der

Klemmenschrittbetrieb ist im Stoppund im Laufstatus aktiv. Ausführen von Schrittbetriebsvorgängen über das Tastenfeld (im Stoppstatus):

- (a) Drücken Sie die Taste "M". Die Meldung "HF-0" wird angezeigt.
- (b) Drücken Sie die Taste "I". Der Wechselrichter läuft zur Schrittbetriebsfrequenz. (Wenn Sie die Taste "M" erneut drücken, wird der Tastenfeld-Schrittbetrieb abgebrochen.)

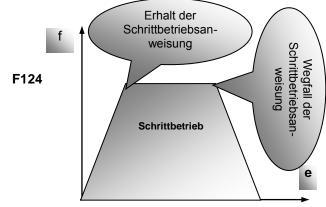


Abbildung 9-1 Schrittbetrieb

Schrittbetrieb-Hochlaufzeit: Die Zeit, in der der Wechselrichter von 0 Hz auf 50 Hz hochläuft.

Schrittbetrieb-Auslaufzeit: Die Zeit, in der der Wechselrichter von 0 Hz auf 50 Hz ausläuft.

Schließen Sie im Klemmenschrittbetrieb die Schrittbetriebsklemme (z. B.DI1) an die Klemme CM an. Der Wechselrichter läuft in der Schrittbetriebsfrequenz. Die Funktionscodes für die Nennwerte sind F316 bis F323.

Hinweis: Bei aktiver Schrittbetriebsfunktion ist die Flycatching-Funktion inaktiv.

F127/F129 Ausblendfrequenz A, B (Hz)	Einstellbereich: 0,00 – 590,0	Werkseinstellung: 0,00 Hz
F128/F130 Sprungbreite A, B (Hz)	Einstellbereich: ±0 - 2,5	Standardwert: 0,0

Bei einer bestimmten Lauffrequenz kann es zu systematischen Vibrationen des Motors kommen. Mit diesem Parameter kann die entsprechende Frequenz übersprungen werden.

Der Wechselrichter überspringt automatisch den Punkt, an dem die Ausgangsfrequenz dem für diesen Parameter eingestellten Wert entspricht.

Die "Sprungbreite" ist der die Ausblendfrequenz umgebende Bereich von der oberen zur unteren Grenze. Beispiel: Ausblendfrequenz = 20 Hz, Sprungbreite = ±0,5 Hz. Der Wechselrichter überspringt automatisch den Bereich, bei dem der Ausgang zwischen 19,5 Hz und 20,5 Hz liegt.

Der Wechselrichter überspringt diesen Frequenzbereich nicht beim Hochlauf bzw. Auslauf.

Hinweis: Während des Flycatching-Prozesse s ist die Ausblendfrequenz inaktiv. Nach Abschluss des Flycatching ist diese Funktion aktiv.



Abbildung 9-2 Ausblendfrequenz

F131 Elemente der Laufanzeige	0: Gegenwärtige Ausgangsfrequenz/Funktionscode 1: Ausgangsdrehzahl 2: Ausgangsstrom 4: Ausgangsspannung 8: PN-Spannung 16: PID-Feedbackwert 32: Temperatur 64: Reserviert 128: Lineargeschwindigkeit 256: Eingegebener PID-Wert 512: Reserviert 1024: Reserviert 2048: Ausgangsleistung 4096: Abtriebsdrehmoment	Werkseinstellung: 0 + 1 + 2 + 4 + 8 = 15
----------------------------------	--	---

Die Auswahl eines der Werte 1, 2, 4, 8, 16, 32, 64 und 128 zeigt, dass nur ein bestimmtes Anzeigeelement ausgewählt wurde. Wenn Sie mehrere Anzeigeelemente bestimmen wollen, addieren Sie die Werte der entsprechenden Anzeigeelemente und geben Sie die Summe als Wert von F131 an. Setzen Sie zum Beispiel F131 auf 19 (1 + 2 + 16), wenn Sie die Elemente "aktuelle Ausgangsdrehzahl", "Ausgangsstrom" und "PID-Feedbackwert" angeben wollen. Der anderen Anzeigeelemente werden ausgeblendet.

Mit F131 = 8191 sind alle Anzeigeelemente sichtbar. "Frequenz/Funktionscode" ist auch sichtbar, wenn die Option nicht gewählt ist.

Wenn Sie ein bestimmtes Anzeigeelement sehen wollen, drücken Sie zum Umschalten die Taste "M".

9-6 Funktionsparameter

Beachten Sie die folgende Tabelle zu den einzelnen Werteinheiten und der dazugehörigen Anzeige.

Die dem eingestellten Wert von F131 entsprechende Zielfrequenz blinkt im Stoppstatus.

Die Zieldrehzahl ist eine Ganzzahl. Wenn der Wert 9999 überschreitet, fügen Sie eine Dezimalstelle hinzu.

Stromstärkeanzeige A *.* Bus-Spannungsanzeige U*** Ausgangsspannungsanzeige u*** Temperatur H***Lineargeschwindigkeit L***. Wenn der Wert 999 überschreitet, fügen Sie eine Dezimalstelle hinzu. Wenn der Wert 9999 überschreitet, fügen Sie zwei Dezimalstellen hinzu usw.

Eingegebener PID-Wert o *.* PID-Feedbackwert b *.*

Abgabeleistung *.* Abtriebsdrehmoment *.*

F132 Anzeigeelemente im Stoppstatus	Einstellbereich: 0: Frequenz/Funktionscode 1: Tastenfeld-Schrittbetrieb 2: Zieldrehzahl 4: PN-Spannung 8: PID-Feedbackwert 16: Temperatur 32: Reserviert 64: Eingegebener PID-Wert 128: Reserviert 256: Reserviert 512: Einstellen des Drehmoments	Werkseinstellung: 0 + 2 + 4 = 6
F133 Übersetzungsverhältnis des angetriebenen Systems	Einstellbereich: 0,10 – 200,0	Standardwert: 1,00
F134 Transmissionsradradius	0,001 – 1,000 (m)	Werkseinstellung: 0,001

Berechnung von Drehzahl und Lineargeschwindigkeit:

Wenn ein Wechselrichter zum Beispiel die folgenden Werte hat: Maximalfrequenz F111 = 50,00 Hz, Anzahl der Motorpole F804 = 4; Übersetzungsverhältnis F133 = 1,00, Transmissionswellenradius R = 0.05 m,

dann beträgt der Transmissionswellenumfang: $2\pi R = 2 \times 3,14 \times 0,05 = 0,314$ (m)

Drehzahl der Transmissionswelle: 60 × Betriebsfrequenz/(Anzahl der Polpaare × Übersetzungsverhältnis) = 60×50/(2×1,00) = 1500 U/min

Maximale Lineargeschwindigkeit Drehzahl × Umfang = 1500 × 0,314 = 471 (m/s)

F136 Schlupfkompensation	Einstellbereich: 0 – 10	Standardwert: 0
--------------------------	-------------------------	-----------------

Bei VVVF-Regelung sinkt die Drehzahl des Motorrotors mit zunehmender Last. Achten Sie darauf, dass die Rotordrehzahl sich in der Nähe der Synchronisationsdrehzahl befindet, wenn der Motor mit Nennlast läuft. Die Schlupfkompensation sollte entsprechend dem Einstellungswert der Frequenzkompensation gewählt werden.

Hinweis: Während des Flycatching-Prozesses ist die Schlupfkompensation inaktiv. Nach Abschluss des Flycatching ist diese Funktion aktiv.

F137 Drehmomentausgleichmodi	Einstellbereich: 0: Linearer Ausgleich 1: Quadratischer Ausgleich 2: Benutzerdefinierter Mehrpunktausgleich 3: Automatischer Drehmomentausgleich	Standardwert: Betriebsarten
F138 Linearer Ausgleich	Einstellbereich: 1 – 20	Standardwert: Modellabhängig

F139 Quadratischer Ausgleich	Einstellbereich: 1: 1,5 2: 1,8 3: 1,9 4: 2.0	Standardwert: 1
---------------------------------	--	-----------------

Wenn F106 = 2, ist die Funktion von F137 aktiv.

Um das niederfrequente Drehmoment bei der VVVF-Regelung auszugleichen, muss die Ausgangsspannung des Wechselrichters bei niedrigen Frequenzen kompensiert werden.

Wenn F137 = 0, ist der lineare Ausgleich gewählt und wird universell auf Last mit konstanten Drehmoment angewendet.

Wenn F137 = 1, ist der quadratische Ausgleich gewählt und wird auf die Last von Lüftern oder Wasserpumpen angewendet.

Wenn F137 = 2, ist der benutzerdefinierte Mehrpunktausgleich gewählt und wird auf die speziellen Lasten von Wäschetrocknern oder Zentrifugen angewendet.

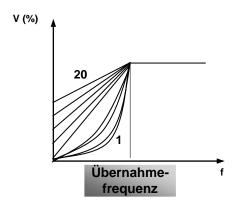
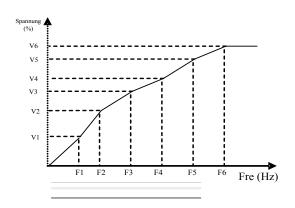


Abbildung 9-3 Drehmomenterhöhung

Dieser Parameter muss bei schwererer Last erhöht und bei leichterer Last verringert werden.

Bei zu hohem Drehmoment kann der Motor leicht überhitzen und der Strom des Wechselrichters zu stark werden. Prüfen Sie bei der Erhöhung des Drehmomentes den Motor.

Wenn F137 = 3, ist der automatische Drehmomentausgleich gewählt. Er kann niedrigfrequente Drehmomente automatisch kompensieren, um den Motorschlupf zu verringern, die Motordrehzahl der Synchrondrehzahl anzunähern und die Motorvibration zu reduzieren. Motorleistung, Drehzahl, Anzahl der Motorpole, Motornennstrom und Statorwiderstand müssen korrekt angegeben werden. Beachten Sie das Kapitel "Messung der Motorparameter".


F140 Freque	Punktkompensationsspannung enz (Hz)	Einstellbereich: 0 – F142	Standardwert: 1,00
F141	Spannungskompensationspunkt 1	Einstellbereich: 0 – 100 %	Je nach Gerät
F142	Benutzerdefinierter Frequenzpunkt F2	Einstellbereich: F140 – F144	Standardwert: 5,00
F143	Benutzerdefinierter Spannungspunkt	Einstellbereich: 0 – 100 %	Standardwert: 13
F144	Benutzerdefinierter Frequenzpunkt F3	Einstellbereich: F142 – F146	Standardwert: 10,00
F145	Benutzerdefinierter Spannungspunkt	Einstellbereich: 0 – 100 %	Standardwert: 24
F146	Benutzerdefinierter Frequenzpunkt F4	Einstellbereich: F144 – F148	Standardwert: 20,00
F147	Benutzerdefinierter Spannungspunkt	Einstellbereich: 0 – 100 %	Standardwert: 45
F148	Benutzerdefinierter Frequenzpunkt F5	Einstellbereich: F146 – F150	Standardwert: 30,00
F149	Benutzerdefinierter Spannungspunkt	Einstellbereich: 0 – 100 %	Standardwert: 63
F150	Benutzerdefinierter Frequenzpunkt F6	Einstellbereich: F148 – F118	Standardwert: 40,00
F151	Benutzerdefinierter Spannungspunkt V6	Einstellbereich: 0 – 100 %	Standardwert: 81

Mehrstufige VVVF-Kurven werden durch 12 Parameter von F140 bis F151 definiert.

Der Einstellwert von VVVF-Kurven wird von der Motorbelastungskennlinie gesetzt.

Hinweis: V1<V2<V3<V4<V5, F1<F2<F3<F4<F5<F6. Zu hoch eingestellte niederfrequente Spannungen führen zur Überhitzung oder Beschädigung des Motors. Der Wechselrichter kann blockieren oder der Überstromschutz kann ausgelöst werden.

Abbildung 9-4 Polygonalzeilen-VVVF

9-8 Funktionsparameter

Hinweis: Während des Flycatching-Prozesses ist die Polygonalzeilen-V/F-Kurvenfunktion inaktiv. Nach Abschluss des Flycatching ist diese Funktion aktiv.

F152 Ausgangsspannung		
entsprechend der	Einstellbereich: 0 – 100	Standardwert: 100
Übernahmefrequenz		

Diese Funktion ist für die Bedürfnisse einiger spezieller Lasten geeignet, Wenn zum Beispiel die Ausgangsfrequenz 300 Hz und die entsprechende Spannung 200 V beträgt (die Spannung der Wechselrichter-Stromversorgung sollte 400 V betragen), sollte die Übernahmefrequenz F118 auf 300 Hz und F152 auf (200÷400) × 100 = 50 gesetzt werden. F152 sollte 50 sein.

Beachten Sie die auf dem Typenschild des Motors angegebenen Parameter. Wenn die Arbeitsspannung über der Nennspannung oder die Frequenz über der Nennfrequenz liegt, kann der Motor beschädigt werden.

F153 Trägerfrequenzeinstellung	Einstellbereich: Modellabhängig	Standardwert: Modellabhängig
--------------------------------	------------------------------------	---------------------------------

Mit dieser Codefunktion wird die Trägerwellenfrequenz des Wechselrichters eingestellt. Durch Anpassen der Trägerwelle können Sie das Motorgeräusch mindern, den Resonanzpunkt des mechanischen Systems vermeiden, den Fehlerstrom des Erdungskabels senken und die Störung des Wechselrichters verringern.

Bei Trägerwellen mit niedriger Frequenz nimmt der Erdfehlerstrom ab, auch wenn das Trägerwellengeräusch des Motors zunimmt. Der Verschleiß und die Temperatur des Motors steigen, die Temperatur des Wechselrichters sind jedoch.

Hohe Trägerwellenfrequenzen führen zur entgegengesetzten Situation mit höheren Störungen.

Wenn die Ausgangsfrequenz des Wechselrichters auf eine hohe Frequenz eingestellt wird, muss der Einstellungswert der Trägerwelle erhöht werden. Die Leistung wird durch Anpassen der Trägerwellenfrequenz entsprechend der folgenden Tabelle beeinflusst:

Trägerwellenfrequenz	Niedrig	\rightarrow	hoch
Motorgeräusch	Laut	\rightarrow	leise
Wellenform des	Ungünstig	\rightarrow	günstig
Motortemperatur	Hoch	\rightarrow	niedrig
Temperatur des	Niedrig	\rightarrow	hoch
Fehlerstrom	Niedrig	\rightarrow	hoch
Störung	Niedrig	\rightarrow	hoch

F154 Automatische	Einstellbereich: 0: Inaktiv, 1: Aktiv	Standardwert: 0
Spannungsgleichrichtung	2: Inaktiv beim Auslaufen	Standardwert. 0

Diese Funktion wird aktiviert, um die Ausgangsspannung bei Schwankungen der Eingangsspannung automatisch konstant zu halten. Der interne PI-Korrekturwert wirkt sich jedoch auf die Auslaufzeit aus. Wenn eine Änderung der Auslaufzeit unzulässig ist, wählen Sie F154 = 2.

F155 Sekundäre digitale Frequenzeinstellung	Einstellbereich: 0 – F111	Standardwert: 0
F156 Polaritätseinstellung für sekundäre digitale Frequenz	Einstellbereich: 0 oder 1	Standardwert: 0
F157 Lesen der sekundären Frequenz		
F158 Auslesen der sekundären Frequenzpolarität		

Wenn bei der kombinierten Drehzahlregelung die sekundäre Frequenzquelle eine digitale Speichereinstellung ist (F204 = 0), gelten F155 und F156 als Anfangswerte der sekundären Frequenz und Polarität (Richtung).

Funktionsparameter 9-9

Bei der kombinierten Drehzahlregelung dienen F157 und F158 zum Auslesen des Werts und der Richtung der sekundären Frequenz.

Wenn zum Beispiel F203 = 1, dann ist F204 = 0. F207 = 1, die eingegebene Analogfrequenz ist 15 Hz, der Wechselrichter muss mit 20 Hz laufen. Bei dieser Anforderung können Sie die Taste "UP" drücken, um die Frequenz von 15 Hz auf 20 Hz zu erhöhen. Sie können auch F155 = 5 Hz und F160 = 0 setzen (0 bedeutet vorwärts, 1 rückwärts). Auf diese Weise kann der Wechselrichter direkt mit 20 Hz betrieben werden.

F159 Zufällige Trägerwellenauswahl	Einstellbereich: 0: Inaktiv 1: Aktiv	Je nach Gerät Wechselrichter
------------------------------------	--------------------------------------	---------------------------------

Wenn F159 = 0, moduliert der Wechselrichter entsprechend der mit F153 gesetzten Trägerwelle. Wenn F159 = 1, wird der Wechselrichter Mottos der zufälligen Trägerwellenmodulation betrieben.

Hinweis: Wenn die zufällige Trägerwellenauswahl ausgewählt ist, steigt das Abtriebsdrehmoment, allerdings bei lauten Geräuschen. Wenn die mit F153 gesetzte Trägerwelle ausgewählt wird, wird das Geräusch verringert, das Abtriebsdrehmoment nimmt jedoch ab. Legen Sie den Wert entsprechend der Situation fest.

F160 Zurücksetzen auf Werkseinstellungen	Einstellbereich: 0: Inaktiv 1: Aktiv	Standardwert: 0
	I. ANLIV	

Wenn fehlerhafte Parameter eingestellt wurden und die Werkseinstellungen wiederhergestellt werden sollen, setzen Sie F160 = 1. Nach dem Wiederherstellen der Werkseinstellungen ändert sich der Wert von F160 automatisch zu 0.

Das Zurücksetzen auf die Werkseinstellungen wirkt sich nicht auf die in der Spalte "Änderung" der Parametertabelle mit "o" markierten Funktionscodes aus. Diese Funktionscodes wurden vor Auslieferung des Wechselrichters korrekt eingestellt. Es wird empfohlen, sie nicht zu ändern.

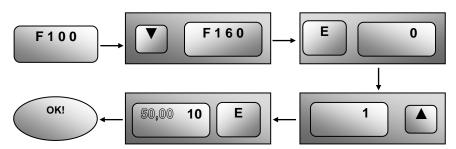


Abbildung 9-5 Zurücksetzen auf Werkseinstellungen

9-10 Funktionsparameter

9.2 Betriebssteuerung

F200 Quelle des Startbefehls	Einstellbereich: 0: Tastaturbefehl; 1: Klemmenbefehl; 2: Tastenfeld + Klemme; 3: MODBUS 4: Tastenfeld + Klemme + MODBUS	Standardwert: 4
F201 Quelle des Stoppbefehls	Einstellbereich: 0: Tastaturbefehl; 1: Klemmenbefehl; 2: Tastenfeld + Klemme; 3: MODBUS 4: Tastenfeld + Klemme + MODBUS	Standardwert: 4

F200 und F201 sind die Ressource zur Auswahl der Wechselrichter-Steuerbefehle.

Zu den Wechselrichter-Steuerbefehlen zählen: Start, Stoppen, Vorwärtslauf, Rückwärtslauf, Schrittbetrieb usw.

"Tastaturbefehl" bezieht sich auf die mit den Tasten "I" und "O" des Tastenfeldes gegebenen Start-/Stoppbefehle.

"Klemmenbefehl" bezieht sich auf die mit der durch F316 – F323 definierten Klemme "I" gegebenen Befehle.

Wenn F200 = 3 und F201 = 3, wird der Laufbefehl über die MODBUS-Kommunikation gegeben.

Wenn F200 = 2 und F201 = 2, sind "Tastaturbefehl" und "Klemmenbefehl" zur selben Zeit aktiv. F200 = 4 und F201 = 4 haben die gleiche Bedeutung.

F202 Methode zur Richtungseinstellung

Die Laufrichtung wird durch diese Funktion gemeinsam mit dem übrigen Drehzahlregelungsmodus gesteuert, der die Laufrichtung des Wechselrichters bestimmen kann. Wenn mit F500 = 2 die automatische Drehzahlregelung ausgewählt ist, ist dieser Funktionscode nicht aktiv.

Wenn der Drehzahlregelungsmodus ohne Regelung der Richtung ausgewählt ist, wird die Laufrichtung des Wechselrichters von diesem Funktionscode geregelt, z. B. Tastenfeld steuert Geschwindigkeit.

Richtung angegeben durch F202	Richtung angegeben durch anderen Steuermodus	Laufrichtung	Erläuterung
0	0	0	
0	1	1	0 bedeutet vorwärts.
1	0	1	1 bedeutet Rückwärts.
1	1	0	

F203 Hauptfrequenzquelle X	Einstellbereich: 0: Speicher der digitalen Übertragung; (Anpassung mit Tastatur) 1: Extern analog AI1; 2: Extern analog AI2; 3: Reserviert; 4: Drehzahlstufenkontrolle; 5: Kein Speicher der digitalen Übertragung; 6: Reserviert; 7: Reserviert; 8: Reserviert; 9: PID-Einstellung; 10: MODBUS	Standardwert: 0
-------------------------------	---	-----------------

Mit diesem Funktionscode wird die Hauptfrequenzquelle festgelegt.

0: Speicher der digitalen Übertragung

Sein Startwert ist der Wert von F113. Die Frequenz kann mit den Tasten bzw. den Klemmen "Aufwärts" und "Abwärts" angepasst werden.

"Speicher der digitalen Übertragung" bedeutet, dass bei einem Stopp des Wechselrichters die Lauffrequenz vor dem Stopp zur Zielfrequenz wird. Wenn Sie die Zielfrequenz nach der Trennung vom Stromnetz im Speicher speichern wollen, setzen Sie F220 = 1, d. h. aktivieren Sie den Frequenzspeicher nach der Abschaltung.

1: Extern analog AI1; 2: Extern analog AI2

Die Frequenz wird mit der analogen Eingangsklemme Al1 und Al2 eingestellt. Das Analogsignal kann das Stromsignal (0 – 20 mA oder 4 – 20 mA) oder das Spannungssignal (0 – 5 V oder 0 – 10 V) sein, was durch einen Umschaltcode ausgewählt werden kann. Zur Anpassung des Umschaltcodes an die jeweilige Situation beachten Sie Abbildung 4-4 und Tabelle 8-2.

Im Lieferzustand der Wechselrichter ist das Analogsignal des Kanals Al1 das Gleichspannungssignal mit dem Spannungsbereich $0-10\,\mathrm{V}$ und das Analogsignal des Kanals Al2 ist das Gleichstromsignal mit dem Stromstärkenbereich $0-20\,\mathrm{mA}$. Wenn ein Stromsignal von $4-20\,\mathrm{mA}$ benötigt wird, setzen Sie den unteren Grenzwert des Analogeingangs F406 = 2, d. h., der Eingangswiderstand beträgt 500 Ohm. Wenn Fehler auftreten, nehmen Sie Anpassungen vor.

4: Drehzahlstufenkontrolle

Die mehrstufige Drehzahlregelung wird ausgewählt, in dem die Drehzahlstufen-Kontrollklemmen F316 – F322 und die Funktionscodes des Abschnitts für mehrstufige Drehzahlregelung eingestellt werden. Die Frequenz wird mit der Klemme für mehrstufige Regelung oder automatische Zyklusfrequenz ausgewählt.

5: Kein Speicher der digitalen Übertragung

Sein Startwert ist der Wert von F113. Die Frequenz kann mit den Tasten bzw. den Klemmen "Aufwärts" und "Abwärts" angepasst werden.

"Kein Speicher der digitalen Übertragung" bedeutet, dass die Zielfrequenz nach einem Stopp unabhängig vom Zustand von F220 den Wert von F113 wiederherstellt.

9: PID-Einstellung

Wenn PID-Einstellung ausgewählt ist, ist die Lauffrequenz des Wechselrichters der von PID eingestellte Frequenzwert. Beachten Sie die Anweisungen der PID-Parameter für eine eingegebene PID-Ressource, eingegebene PID-Nummern, Feedbackquelle usw.

10: MODBUS

Die Hauptfrequenz wird über die MODBUS Kommunikation eingegeben.

9-12 Funktionsparameter

F204 Sekundäre Frequenzquelle Y	Einstellbereich: 0: Speicher der digitalen Übertragung; (Anpassung mit Tastatur) 1: Extern analog AI1; 2: Extern analog AI2; 3: Reserviert; 4: Drehzahlstufenkontrolle; 5: PID-Einstellung; 6: Reserviert;	Standardwert: 0
------------------------------------	--	-----------------

Wenn die sekundäre Frequenz Y als unabhängige Frequenz in den Kanal eingegeben wird, hat sie dieselbe Funktion wie die Hauptfrequenzquelle X.

Wenn F204 = 0, wird der Startwert der sekundären Frequenz durch F155 gesetzt. Wenn die sekundäre Frequenz die Drehzahl unabhängig regelt, ist die Polaritätseinstellung F156 nicht aktiv.

Wenn F207 = 1 oder 3 und F204 = 0, wird der Startwert der sekundären Frequenz durch F155 gesetzt, die Polarität der sekundären Frequenz durch F156. Der Startwert der sekundären Frequenz und die Polarität der sekundären Frequenz können mit F157 und F158 überprüft werden.

Wenn die sekundäre Frequenz mit dem Analogeingang (Al1, Al2) eingegeben wird, wird der Einstellbereich für die sekundäre Frequenz mit F205 und F206 gesetzt.

Wenn die sekundäre Frequenz mit dem Tastenfeldpotentiometer eingegeben wird, kann die Hauptfrequenz nur die mehrstufige Drehzahlregelung und die Modbus-Regelung auswählen (F203 = 4, 10).

Hinweis: Die sekundäre Frequenzquelle Y und die Hauptfrequenzquelle X können nicht denselben Frequenzkanal verwenden.

F205 Referenz zur Auswahl des	Einstellbereich:	
Bereichs der sekundären	0: Relativ zur Maximalfrequenz;	Standardwert: 0
Frequenzquelle Y	1: Relativ zur Hauptfrequenz X	
F206 Bereich der sekundären	Einstellbereich:	Standardwert: 100
Frequenz Y (%)	0 – 100	Standardwert. 100

Wenn für die Frequenzquelle die kombinierte Drehzahlregelung verwendet wird, wird mit F206 das relative Objekt des Einstellungsbereichs für die sekundäre Frequenz bestätigt.

F205 bestätigt die Referenz des sekundären Frequenzbereichs. Wenn diese relativ zur Hauptfrequenz ist, ändert sich der Bereich entsprechend der Änderung der Hauptfrequenz X.

	Einstellbereich:	
	0: X;	
	1: X + Y;	
F207 Auswahl der	2: X oder Y (Klemmenumschaltung);	
	3: X oder X + Y (Klemmenumschaltung);	Standardwert: 0
Frequenzquelle	4: Kombination aus mehrstufiger Drehzahl	
	und analogem Signal	
	5: X-Y	
	6: Reserviert	

Wählen Sie den Kanal zum Einstellen der Frequenz. Die Frequenz wird durch die Kombination der Hauptfrequenz X und der sekundären Frequenz Y angegeben.

Wenn F207 = 0, wird die Frequenz durch die Hauptfrequenzquelle gesetzt.

Wenn F207 = 1, X + Y, wird die Frequenz durch Addieren der Hauptfrequenzquelle zur sekundären Frequenzquelle gesetzt. X oder Y können durch PID angegeben werden.

Wenn F207 = 2, können Hauptfrequenzquelle und sekundäre Frequenzquelle durch die Frequenzquellen-Umschaltklemme umgeschaltet werden.

Wenn F207 = 3, können eingegebene Hauptfrequenz und eingegebene sekundäre Frequenz (X + Y) durch die Frequenzquellen-Umschaltklemme umgeschaltet werden. X oder Y können nicht durch PID angegeben werden.

Funktionsparameter 9-13

Wenn F207 = 4, hat die mehrstufige Drehzahleinstellung der Hauptfrequenzquelle Priorität vor der analogen Einstellung der sekundären Frequenzquelle (nur geeignet für F203 = 4 und F204 = 1).

Wenn F207 = 5, X + Y, wird die Frequenz durch Subtrahieren der sekundären Frequenzquelle von der Hauptfrequenzquelle gesetzt. Wenn die Frequenz durch die Hauptfrequenz oder die sekundäre Frequenz gesetzt wird, kann die PID-Drehzahlregelung nicht gewählt werden.

Hinweis:

Wenn F203 = 4 und F204 = 1, besteht der Unterschied zwischen F207 = 1 und F207 = 4 darin, dass bei F207 = 1 die Auswahl der Frequenzquelle die Addition der mehrstufigen Drehzahl und des analogen Signals ist und bei F207 = 4 die Auswahl der Frequenzquelle die mehrstufige Drehzahl mit mehrstufiger Drehzahl und analogem Eingang zur selben Zeit ist. Wenn die eingegebene mehrstufige Drehzahlregelung abgebrochen wird und der analoge Eingang weiterhin existiert, läuft der Wechselrichter nach dem analogen Eingang.

Der Modus der eingegebenen Frequenz kann durch Auswahl von F207 ausgewählt werden. Beispiel: Umschalten zwischen PID-Einstellung und normaler Drehzahlregelung, Umschalten zwischen mehrstufiger Drehzahl und analogem Eingang, Umschalten zwischen PID-Einstellung und analogem Eingang usw.

Die Hochlauf-/Auslaufzeit der mehrstufigen Drehzahl wird durch den Funktionscode der Zeit der entsprechenden mehrstufigen Drehzahl gesetzt. Wenn die kombinierte Drehzahlregelung als Frequenzquelle verwendet wird, wird die Hochlauf-/Auslaufzeit mit F114 und F115 gesetzt.

Die Drehzahlregelung bei automatischem Zyklus ist nicht für die Kombination mit anderen Modi geeignet.

Wenn F207 = 2 (Hauptfrequenzquelle und sekundäre Frequenzquelle können mit Klemmen gewechselt werden) und die Hauptfrequenz nicht unter den Wert der mehrstufigen Drehzahlregelung gesetzt wird, kann die sekundäre Frequenz unter den Wert der Drehzahlregelung bei automatischem Zyklus gesetzt werden (F204 = 5, F500 = 0). Durch die definierte Umschaltklemme können der (durch X definierte) Regelungsmodus und die (durch Y definierte) Drehzahlregelung bei automatischem Zyklus frei gewechselt werden.

Wenn die Einstellungen der Hauptfrequenz und der sekundären Frequenz identisch sind, ist nur die Hauptfrequenz aktiv.

	Einstellbereich:	
	0: Keine Funktion	
F209	1: Zweileitungsbetriebsmodus 1;	
F208	2: Zweileitungsbetriebsmodus 2;	Ctandardwart: 0
Klemme für Zwei- oder	3: Dreileitungsbetriebsmodus 1;	Standardwert: 0
Dreileitungsbetrieb	4: Dreileitungsbetriebsmodus 2;	
	5: Start/Stopp gesteuert durch	
	Richtungsimpuls	

Bei Auswahl des Zweileitungstyps oder des Dreileitungstyps sind F200, F201 und F202 inaktiv.

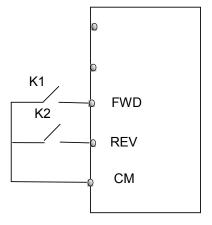
Fünf Modi stehen für die Klemmenbetriebregelung zur Verfügung.

Hinweis:

Bei mehrstufiger Drehzahlregelung setzen Sie F208 auf 0. Wenn F208 ≠ 0 (bei Auswahl des Zweileitungstyps oder des Dreileitungstyps), sind F200, F201 und F202 inaktiv.

"FWD", "REV" und "X" sind drei in der Programmierung von DI1 – DI5 bezeichnete Klemmen.

9-14 Funktionsparameter

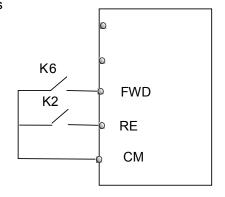

1: Zweileitungsbetriebsmodus 1: Dies ist der am häufigsten verwendete Zweileitungsmodus. Die Laufrichtung des Modus wird durch die Klemmen FWD und REV geregelt.

Beispiel: Klemme "FWD" -----, offen": Stopp, "geschlossen": Vorwärtslauf;

Klemme "REV" -----, offen": Stopp, "geschlossen": Rückwärtslauf;

Klemme "CM" -----gemeinsamer Anschluss

K1	K2	Laufbefehl
0	0	Stopp
1	0	Vorwärtslauf
0	1	Rückwärtslauf
1	1	Stopp


2: Zweileitungsbetriebsmodus 2: Wenn dieser Modus verwendet wird, ist FWD die Aktivierungsklemme und die Richtung wird durch die Klemme REV geregelt.

Beispiel: Klemme "FWD" -----, offen": Stopp, "geschlossen": Lauf;

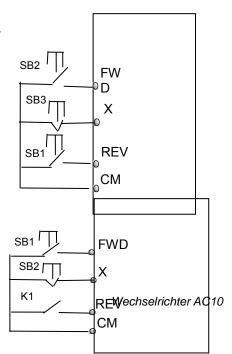
Klemme "REV" -----, offen": Vorwärtslauf, "geschlossen": Rückwärtslauf;

Klemme "CM" -----gemeinsamer Anschluss

K1	K2	Laufbefehl
0	0	Stopp
0	1	Stopp
1	0	Vorwärtslauf
1	1	Rückwärtslauf

3: Dreileitungsbetriebsmodus 1:

In diesem Modus ist Klemme X die Aktivierungsklemme und die Richtung wird durch die Klemmen FWD und REV geregelt. Impulssignal ist aktiv.


Der Stoppbefehl wird durch Öffnen der Klemme X gegeben.

SB3: Stopptaste

SB2: Vorwärtstaste

SB1: Rückwärtstaste

4: Dreileitungsbetriebsmodus 2:

Funktionsparameter 9-15

In diesem Modus ist Klemme X die Aktivierungsklemme und der Laufbefehl wird durch die Klemme FWD geregelt. Die Laufrichtung wird durch die Klemme REV geregelt und der Stoppbefehl wird durch Öffnen der Klemme X gegeben.

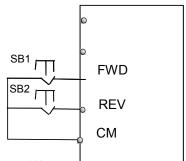
SB1: Lauftaste SB2: Stopptaste

K1: Richtungsschalter. Öffnen steht für Vorwärtslauf; geschlossen für Rückwärtslauf.

5: Start/Stopp geregelt durch Richtungsimpuls:

Klemme "FWD"—(Impulssignal: Vorwärts/Stopp)

Klemme "REV"—(Impulssignal: Rückwärts/Stopp)


Klemme "CM"—gemeinsamer Anschluss

Hinweis: Wenn der Impuls von SB1 auslöst, läuft der Wechselrichter vorwärts. Wenn der

Impuls erneut auslöst, wird der Wechselrichter gestoppt.

Wenn Impuls von SB2 auslöst, läuft der Wechselrichter rückwärts. Wenn der Impuls erneut auslöst,

wird der Wechselrichter gestoppt.

FOOD Assessible and a Market	Einstellbereich:	
F209 Auswählen des Modus zum Stoppen des Motors	0: Stopp durch Auslaufzeit;	Werkseinstellung: 0
Zum Gtoppen des Meters	1: Freistopp (Freilaufstopp)	

Wenn das Stoppsignal eingegeben wird, wird der Stoppmodus durch diesen Funktionscode gesetzt.

F209=0: Stopp durch Auslaufzeit

Der Wechselrichter verringert die Ausgangsfrequenz entsprechend der Hochlauf-/Auslaufkurve. Wenn die Frequenz auf 0 sinkt, stoppt der Wechselrichter.

F209 = 1: Freistopp

Nachdem der Stoppbefehl aktiv ist, schließt der Wechselrichter den Ausgang. Der Motor läuft aufgrund der mechanischen Trägheit bis zum Stillstand aus.

F210 Genauigkeit der	Einstellbereich:	Standardwert:
Frequenzanzeige	0.01 - 2.00	0,01

Bei der Drehzahlregelung über das Tastenfeld oder die Klemmen Aufwärts/Abwärts wird mit diesem Funktionscode die Genauigkeit der Frequenzanzeige im Bereich von 0,01 bis 2,00 eingestellt. Wenn zum Beispiel F210 = 0.5, wird bei jeder Betätigung der Klemme ▲/▼ die Frequenz um 0,5 Hz erhöht.

F211 Drehzahlregelung	Einstellbereich:	Standardwert:
durch digitale Steuerung	0,01 – 100,0 Hz/s	5,00

Wenn die Klemme UP/DOWN betätigt wird, ändert sich die Frequenz um den eingestellten Wert. Der Standardwert beträgt 5,00 Hz/s.

9-16 Funktionsparameter

F212 Richtungsspeicher	Einstellbereich: 0: Inaktiv	Standardwert: 0
	1: Aktiv	

Diese Funktion ist aktiv, wenn Dreileitungsbetriebsmodus 1(F208 = 3) aktiv ist.

Wenn F212 = 0, wird die Laufrichtung nach dem Stoppen, Zurücksetzen und erneuten Einschalten des Wechselrichters nicht gespeichert.

Wenn F212 = 1 und der Wechselrichter gestoppt, zurückgesetzt und erneut eingeschaltet wird, ohne dass ein Richtungssignal eingegeben wird, läuft der Wechselrichter in der gespeicherten Richtung.

F213 Automatischer Start nach erneutem Einschalten	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 0
F214 Automatischer Start nach Rückstellung	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 0

Ob der Wechselrichter nach dem erneuten Einschalten automatisch gestartet wird, wird mit F213 eingestellt.

F213 = 1, Automatischer Start nach erneutem Einschalten ist aktiv. Wenn der Wechselrichter aus- und wieder eingeschaltet wird, startet er automatisch nach der mit F215 eingestellten Zeit im Laufmodus vor der Abschaltung. Wenn F220 = 0, das heißt, wenn der Frequenzspeicher nach der Abschaltung nicht aktiv ist, läuft der Wechselrichter mit dem Einstellwert von F113.

Wenn F213 = 0, startet der Wechselrichter nach dem Wiedereinschalten erst, wenn ein Laufbefehl gegeben wird.

Ob der Wechselrichter nach einer Fehlerrückstellung automatisch gestartet wird, wird mit F214 eingestellt.

Wenn F214 = 1, wird der Wechselrichter bei einem Fehler automatisch nach der Verzögerungszeit für die Fehlerrückstellung (F217) zurückgesetzt. Nach der Rückstellung läuft der Wechselrichter nach der Autostart-Verzögerungszeit (F215) automatisch wieder an.

Wenn der Frequenzspeicher nach der Abschaltung (F220) aktiv ist, läuft der Wechselrichter mit der Drehzahl vor der Abschaltung an. Andernfalls läuft der Wechselrichter mit der durch F113 eingestellten Drehzahl.

Bei einem Fehler im Laufstatus wird der Wechselrichter automatisch zurückgesetzt und neu gestartet. Bei einem Fehler im Stoppstatus wird der Wechselrichter nur automatisch zurückgesetzt.

Wenn F214 = 0, zeigt der Wechselrichter nach einem Fehler einen Fehlercode an und muss manuell zurückgesetzt werden.

F215 Autostart-Verzögerungszeit	Einstellbereich: 0,1 – 3000,0	Standardwert: 60,0
---------------------------------	-------------------------------	--------------------

F215 ist die Autostart-Verzögerungszeit für F213 und F214. Der Bereich liegt zwischen 0,1 und 3000,0 s.

F216 Autostart-Zeiten bei wiederholten Fehlern	Einstellbereich: 0 – 5	Standardwert: 0
F217 Zeitverzögerung für Fehlerrückstellung	Einstellbereich: 0,0 – 10,0	Standardwert: 3,0

F216 stellt die maximale Autostartzeit bei wiederholten Fehlern ein. Wenn die Startzeit den Einstellwert dieses Funktionscodes überschreitet, wird der Wechselrichter nicht zurückgesetzt oder nach einem Fehler automatisch gestartet. Der Wechselrichter startet erst wieder, wenn ein Laufbefehl manuell gegeben wird.

F217 stellt die Zeitverzögerung für die Fehlerrückstellung ein. Diese ist das Intervall vom Fehler bis zur Rückstellung und kann von 0,0 bis 10,0 s lang sein.

F219	EEPROM durch Modbus beschreiben	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 1
F220	Frequenzspeicher nach Abschaltung	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 0

F220 legt fest, ob der Frequenzspeicher nach der Abschaltung aktiv ist.

Diese Funktion gilt für F213 und F214. Mit dieser Funktion wird eingestellt, ob der Laufstatus nach dem Abschalten oder einer Fehlfunktion gespeichert wird.

·Die Funktion des Frequenzspeichers nach der Abschaltung gilt für die Hauptfrequenz und die am Digitaleingang eingegebene sekundäre Frequenz. Da die sekundäre Frequenz der digitalen Übertragung positive und negative Polarität besitzt, wird sie in den Funktionscodes F155 und F156 gespeichert.

F204 F203	0 Speicher der digitalen	1 Extern analog Al1	2 Extern analog Al2	4 Mehrstufige Klemmendreh-	5 PID-Einste-
	Übertragung			zahlregelung	llung
0 Speicher der	0	•	•	•	•
Digitaleinstellung	-	-	-	-	-
1 Extern analog AI1	•	0	•	•	•
2 Extern analog Al2	•	•	0	•	•
4 Mehrstufige					
Drehzahlregelung	•	•	•	0	•
5 Digitaleinstellung	0	•	•	•	•
9 PID-Einstellung	•	•	•	•	0
10 MODBUS	•	•	•	•	•

Tabelle 9-1 Kombination der Drehzahlregelung

Die Drehzahlregelung bei automatischem Zyklus ist nicht für die Kombination mit anderen Modi geeignet. Wenn die Kombination die Drehzahlregelung bei automatischem Zyklus beinhaltet, ist nur der Haupt-Drehzahlregelungsmodus aktiv.

F224 Wenn die Zielfrequenz unter der	Einstellbereich: 0: Stopp 1:	Werkseinstellung: 1
Minimalfrequenz liegt	Lauf bei Minimalfrequenz	

^{•:} Kombination zulässig.

o: Kombination nicht zulässig.

9-18 Funktionsparameter

F224 = 1, wenn die Zielfrequenz unter der Minimalfrequenz liegt, läuft der Wechselrichter mit der Minimalfrequenz.

F228 Anwendungsauswahl F 2 2	Einstellbereich: 0: Inaktiv 1: EINFACHE DREHZAHLREGELUNG 2: Automatische/manuelle Drehzahlregelung 3: Voreinstellbare Drehzahlen 4: Drehzahlregelung über Klemmen	Standardwert: 0
8	Klemmen 5: PID-Regelung	

kann durch F160 = 1 auf die Werkseinstellung gesetzt werden.

9.3 Multifunktionsein- und -ausgangsklemmen

9.3.1 Digitale Multifunktionsausgangsklemmen

F300 Relaistokenausgang	Einstellbereich: 0 – 40	Werkseinstellung: 1
F301 DO1-Tokenausgang	Ausführliche Anweisungen finden Sie	Werkseinstellung: 14
F302 DO2-Tokenausgang	in Tabelle 9-2.	Werkseinstellung: 5

Tabelle 9-2 Anweisungen für digitale Multifunktionsausgangsklemmen

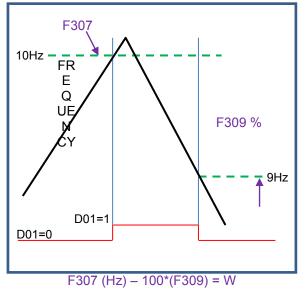
Wert	Funktion	Vorgehensweise
0	Keine Funktion	Ausgangsklemme hat keine Funktionen.
1	Wechselrichter- Fehlerschutzeinrichtung	Wenn der Wechselrichter eine Fehlerabschaltung durchführt, ist der Pegel dieses Signalausgangs "High".
2	Überlatente Frequenz 1	Siehe Anleitung zu F307 bis F309.
3	Überlatente Frequenz 2	Siehe Anleitung zu F307 bis F309.
4	Freistopp	Im Freistoppstatus wird nach der Eingabe des Stoppbefehls ein ON-Signal ausgegeben, bis der Wechselrichter stoppt.
5	Im Laufstatus 1	Zeigt an, dass der Wechselrichter läuft und ein ON-Signal ausgegeben wird.
6	Gleichstrombremsung	Zeigt an, dass der Wechselrichter im Gleichstrombremsungs-Status ist und ein ON-Signal ausgegeben wird.
7	Wechsel von Hochlauf- und Auslaufzeit	Zeigt an, dass der Wechselrichter im Wechselstatus von Hochlauf- und Auslaufzeit ist.
8	Reserviert	

Funktionsparameter 9-19

Wert	Funktion	Vorgehensweise
9	Reserviert	
10	Voralarm Wechselrichterüberlastung Blockierungswarnung	Wenn der Wechselrichter überlastet ist, wird nach der Hälfte der Schutzzeit ein ON-Signal ausgegeben. Die Ausgabe des ON-Signals wird gestoppt, wenn die Überlastung endet oder der Überlastschutz ausgelöst wird.
11	Voralarm Motorüberlast	Wenn der Motor überlastet ist, wird nach der Hälfte der Schutzzeit ein ON-Signal ausgegeben. Die Ausgabe des ON-Signals wird gestoppt, wenn die Überlastung endet oder der Überlastschutz ausgelöst wird.
12	Blockieren	Der Wechselrichter stoppt das Hochlaufen bzw. Auslaufen, da er blockiert ist, und das ON-Signal wird ausgegeben.
13	Der Wechselrichter ist laufbereit.	Wenn der Wechselrichter eingeschaltet wird, die Schutzfunktion nicht aktiv ist und der Wechselrichter laufbereit ist, wird das ON-Signal ausgegeben.
14	Im Laufstatus 2	Zeigt an, dass der Wechselrichter läuft und ein ON-Signal ausgegeben wird. Wenn der Wechselrichter mit 0 Hz läuft, gilt dies als Laufstatus und das ON-Signal wird ausgegeben.
15	Zielfrequenz erreicht Bei Drehzahl	Zeigt an, dass der Wechselrichter die Zielfrequenz erreicht hat und ein ON-Signal ausgegeben wird. Siehe F312.
16	Überhitzungsvoralarm Warnung	Wenn die gemessene Temperatur 80 % des Einstellwerts erreicht, wird das ON-Signal ausgegeben. Wenn der Überhitzungsschutz ausgelöst wird oder der gemessene Wert unter 80 % des Einstellwerts liegt, wird die Ausgabe des ON-Signals gestoppt.
17	Überlatenter Stromausgang	Wenn der Ausgangsstrom des Wechselrichters den eingestellten überlatenten Strom erreicht, wird das ON-Signal ausgegeben. Siehe F310 und F311.
18	Unterbrechungsschutz für analoge Leitung	Zeigt an, dass der Wechselrichter die Unterbrechung der analogen Eingangsleitungen erkannt hat und ein ON-Signal ausgegeben wird. Siehe F741.
19	Reserviert	
20	Nullausgangsstrom erkannt	Wenn der Ausgangsstrom des Wechselrichters auf den Nullstrom-Schwellenwert gefallen ist, wird nach der mit F755 eingestellten Zeit ein ON-Signal ausgegeben. Siehe F754 und F755.
21	DO1-Ausgang geregelt	1 bedeutet, dass der Ausgang aktiv ist.

9-20 Funktionsparameter

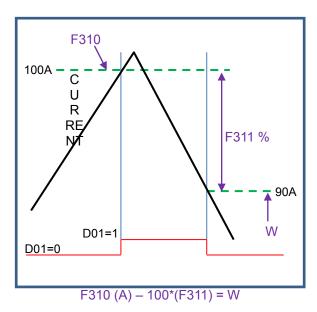
Wert	Funktion	Vorgehensweise
	durch PC/SPS	0 bedeutet, dass der Ausgang inaktiv ist.
22	DO2-Ausgang geregelt durch PC/SPS	
23	TA\TC-Ausgang geregelt durch PC/SPS	
24	Watchdog-Tokenausgang	Der Tokenausgang ist aktiv, wenn der Wechselrichter Err6 auslöst.
25 – 39	Reserviert	
40	Wechsel zu Hochfrequenzleistung	Wenn diese Funktion aktiviert ist, schaltet der Wechselrichter in den Optimierungsmodus für hohe Frequenzen.


	Setting range:	
F303 DO1 output types selection	0: level output	Mfr's value: 0
	1 : pulse output	

When level output is selected, all terminal functions in table 9-2 can be defined by F301.

When pulse output is selected, DO1 can be defined as high-speed pulse output terminal. The max pulse frequency is 50KHz. The related function codes are F449 \, F450 \, F451 \, F452 \, F453.

F307	Charakteristische Frequenz 1	Einstellbereich: F112 – F111 Hz	Standardwert: 10,00 Hz
F308	Charakteristische Frequenz 2		Standardwert: 50,00 Hz
F309 Freque	Breite der charakteristischen enz	Einstellbereich: 0 – 100 %	Standardwert: 50


Wenn F300 = 2, 3, F301 = 2, 3 und F302 = 2, 3 und die charakteristische Tokenfrequenz gewählt ist, stellen diese Gruppenfunktionscodes die charakteristische Frequenz und ihre Breite ein. Beispiel: Bei der Einstellung F301 = 2, F307 = 10, F309 = 10 gibt DO1 ein ON-Signal aus, wenn die Frequenz höher als F307 ist. Wenn die Frequenz niedriger ist als (10 - 10 * 10 %) = 9 Hz, gibt DO1 ein OFF-Signal aus.

F310 Charakteristischer Strom	Einstellbereich: 0 – 5000	Standardwert: Nennstrom
F311 Breite des charakteristischen Stroms	Einstellbereich: 0 – 100	Standardwert: aus

Wenn F300 = 17 oder F301 = 17 und der charakteristische Tokenstrom gewählt ist, stellen diese Gruppenfunktionscodes den charakteristischen Strom und seine Breite ein.

Beispiel: Bei der Einstellung F301 = 17, F310 = 100, F311 = 10 gibt DO1 ein ON-Signal aus, wenn der Wechselrichterstrom höher als F310 ist. Wenn der Wechselrichterstrom niedriger ist als (100 - 100 * 10 %) = 90 A, gibt DO1 ein OFF-Signal aus.

F312 Schwellenwert für Erreichen der Zielfrequenz
Bei Drehzahl

Einstellbereich: 0,00 – 5,00 Hz

Standardwert: 0,00

Wenn F300 = 15 oder F301 = 15, wird der Schwellenwertbereich durch F312 eingestellt.

Beispiel: Wenn F301 = 15, die Zielfrequenz 20 Hz beträgt und F312 = 2, wird von DO1 ein ON-Signal ausgegeben, sobald die Lauffrequenz 18 Hz (20 - 2) erreicht hat, und zwar so lange, bis die Lauffrequenz die Zielfrequenz erreicht hat.

9-22 Funktionsparameter

9.3.2 Digitale Multifunktionseingangsklemmen

F316	Einstellbereich:	
DI1-Klemmenfunktionseinstellung	0: Keine Funktion	Standardwert: 11
F317 DI2-Klemmenfunktionseinstellung	1: Lauf 2: Stopp 3: Mehrstufige Drehzahl 1	Werkseinstellung: 9
F318 DI3-Klemmenfunktionseinstellung	4: Mehrstufige Drehzahl 2 5: Mehrstufige Drehzahl 3	Werkseinstellung: 15
F319 DI4-Klemmenfunktionseinstellung	6: Mehrstufige Drehzahl 4 7: rückgesetzt	Werkseinstellung: 16
F320 DI5-Klemmenfunktionseinstellung	8: Freistopp 9: Externer Freilaufstopp 10: Hochlaufen/Auslaufen	Werkseinstellung: 7
F321 DI6-Klemmenfunktionseinstellung	unzulässig 11: Schrittbetrieb vorwärts 12: Schrittbetrieb rückwärts	Werkseinstellung: 8
F322 DI7-Klemmenfunktionseinstellung	13: Klemme AUFWÄRTS zum Erhöhen der Frequenz	Werkseinstellung: 0
F323 DI8-Klemmenfunktionseinstellung Dieser Parameter dient zur Einstellung	14: Klemme ABWÄRTS zum Senken der Frequenz 15: Klemme "FWD" 16: Klemme "REV" 17: Dreileitungstyp-Eingang Klemme "X" 18: Wechsel von Hochlauf- und Auslaufzeit 1 19: Reserviert 20: Umschaltung zwischen Drehzahl und Drehmoment 21: Umschaltklemme für Frequenzquelle 32: Branddruck-Umschaltung 33: Brand-Notfallsteuerung 34: Wechsel Hochlauf/Auslauf 2 37: PTC-Überhitzungsschutz mit gemeinsamem Schließerkontakt 38: PTC-Überhitzungsschutz mit gemeinsamem Öffnerkontakt 48: HF-Umschaltung 52: Schrittbetrieb (ohne Richtung) 53: Watchdog 54: Frequenzrückstellung 55: Umschaltung zwischen manuellem und automatischem Lauf 56: Manueller Lauf 57: Automatischer Lauf 58: Richtung	Werkseinstellung: 0

Dieser Parameter dient zur Einstellung der entsprechenden Funktion der multifunktionalen Digitaleingangsklemmen.

Freistopp und externer Freilaufstopp der Klemme haben die höchste Priorität.

Tabelle 9-3 Anweisungen für digitale Multifunktionseingangsklemmen

Wert	Funktion	Vorgehensweise	
0	Keine Funktion	Der Wechselrichter läuft auch dann nicht, wenn ein Signal eingegeben wird. Diese Funktion kann mit einer undefinierten Klemme eingestellt werden, um die versehentliche Inbetriebnahme zu vermeiden.	
1	Laufklemme	Wenn ein Laufbefehl über eine Klemme oder eine Klemmenkombination gegeben wird und diese Klemme aktiv ist, wird der Wechselrichter gestartet. Diese Klemme hat die gleiche Funktion wie die Taste "I" des Tastenfelds.	
2	Stoppklemme	Wenn ein Stoppbefehl über eine Klemme oder eine Klemmenkombination gegeben wird und diese Klemme aktiv ist, wird der Wechselrichter gestoppt. Diese Klemme hat die gleiche Funktion wie die Taste "Stopp" des Tastenfelds.	
3	Klemme für mehrstufige Drehzahlregelung 1		
4	Klemme für mehrstufige Drehzahlregelung 2	Die 15-stufige Drehzahlregelung erfolgt durch eine Kombination der Klemmen dieser Gruppe.	
5	Klemme für mehrstufige Drehzahlregelung 3	Siehe Tabelle 9-5.	
6 Klemme für mehrstufige Drehzahlregelung 4			
7	Rückstellungsklemme	Diese Klemme hat die gleiche Funktion wie die Taste "O" des Tastenfelds.	
8	Freistoppklemme Freilaufstopp	Der Wechselrichter schließt den Ausgang, ohne den Stoppprozess des Motors zu regeln. Diese Methode wird bei Lasten mit großer Trägheit verwendet oder wenn keine besonderen Anforderungen an die Abbremszeit bestehen. Diese Methode hat die gleiche Funktion wie der Freistopp von F209.	
9	Klemme für externen Freilaufstopp	Wenn ein externes Störungssignal in den Wechselrichter eingegeben wird, tritt eine Störung auf und der Wechselrichter wird gestoppt.	
10	Klemme "Hochlaufen/Auslaufen unzulässig" Drehzahl halten	Der Wechselrichter wird (mit Ausnahme des Stoppsignals) nicht durch externe Signale gesteuert und läuft mit der aktuellen Ausgangsfrequenz.	
11	Schrittbetrieb vorwärts	Schrittbetrieb vorwärts und Schrittbetrieb	
12	Schrittbetrieb rückwärts	rückwärts. Zu Lauffrequenz, Hochlauf- und Auslaufzeit beim Schrittbetrieb siehe F124, F125 und F126.	
13	Klemme AUFWÄRTS zum Erhöhen der Frequenz	Wenn die Frequenzquelle durch die digitale Übertragung eingestellt wird, kann die	
14	Klemme ABWÄRTS zum Senken der Frequenz	eingestellte Frequenz mit F211 angepasst werden.	
15	Klemme "FWD"	Wenn ein Start- oder Stoppbefehl über eine	
16	Klemme "REV"	Klemme oder eine Klemmenkombination gegeben wird, wird die Laufrichtung des	

9-24 Funktionsparameter

Wert	Funktion	Vorgehensweise
		Wechselrichters durch externe Klemmen geregelt.
17	Dreileitungseingang Klemme "X"	Mit den Klemmen "FWD", "REV" und "CM" wird die Dreileitungsregelung realisiert. Details siehe F208.
18	Wechsel von Hochlauf- und Auslaufzeit 1	Wenn diese Funktion aktiv ist, ist die zweite Hochlauf-/Auslaufzeit aktiv. Siehe F116 und F117.
21	Umschaltklemme für Frequenzquelle	Wenn F207 = 2, können Hauptfrequenzquelle und sekundäre Frequenzquelle durch die Frequenzquellen-Umschaltklemme umgeschaltet werden. Wenn F207 = 3, können X und (X + Y) durch die Frequenzquellen-Umschaltklemme umgeschaltet werden.
32	Branddruck-Umschaltung	Wenn bei aktiver PID-Regelung diese Klemme aktiv ist, wird der PID-Einstellwert auf den festgelegten Branddruck (FA58) umgeschaltet.
33	Brand-Notfallsteuerung	Wenn der Notfallbrandmodus (FA59) aktiv ist, wechselt der Wechselrichter in den Notfallbrandmodus.
34	Wechsel Hochlauf/Auslauf 2	Siehe Tabelle 9-4.
37	PTC-Überhitzungsschutz mit gemeinsamem Schließerkontakt	Wenn diese Funktion aktiv ist und ein Überhitzungsschutzrelais mit gemeinsamem Schließerkontakt angeschlossen ist, ist der Motor geschützt. Wenn der Kontakt geschlossen wird und sich der Wechselrichter im Laufstatus befindet, wird eine OH1-Abschaltung des Wechselrichters durchgeführt.
48	HF-Umschaltung	Wenn diese Funktion aktiviert ist, schaltet der Wechselrichter in den Optimierungsmodus für hohe Frequenzen.
38	PTC-Überhitzungsschutz mit gemeinsamem Öffnerkontakt	Wenn diese Funktion aktiv ist und ein Überhitzungsschutzrelais mit gemeinsamem Öffnerkontakt angeschlossen ist, ist der Motor geschützt. Wenn der Kontakt geöffnet wird und sich der Wechselrichter im Laufstatus befindet, wird eine OH1-Abschaltung des Wechselrichters durchgeführt.
52	Schrittbetrieb (ohne Richtung)	In der Anwendung 1 und 2 wird die Richtung des Schrittbetriebbefehls durch die auf 58: Richtung eingestellte Klemme geregelt.
53	Watchdog	Wenn die mit F326 eingestellte Zeit verstreicht, ohne dass ein Impuls registriert wird, löst der Wechselrichter den Fehler Err6 aus und wird in dem mit F327 eingestellten Stoppmodus gestoppt.
54	Frequenzrückstellung	Wenn die Funktion in Anwendung 4 aktiv ist, ändert sich die Zielfrequenz zu dem mit F113 eingestellten Wert.
55	Umschaltung zwischen manuellem und automatischem Lauf	In Anwendung 2 wird die Funktion zum Umschalten zwischen manuellem und automatischem Lauf verwendet.
56	Manueller Lauf	Wenn die Funktion in Anwendung 2 aktiv ist, läuft der Wechselrichter manuell.

Wert	Funktion	Vorgehensweise
57	Automatischer Lauf Wenn die Funktion in Anwendung 2 aktiv ist der Wechselrichter automatisch.	
58	Richtung	In der Anwendung 1 und 2 wird die Funktion zum Eingeben der Richtung verwendet. Wenn die Funktion aktiv ist, läuft der Wechselrichter rückwärts. Andernfalls läuft der Wechselrichter vorwärts.

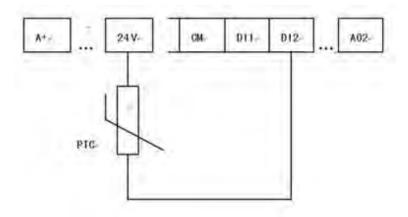


Abbildung 9-6 PTC-Überhitzungsschutz

Wenn sich der Kodierschalter in der Position "NPN" befindet, ist der PTC-Widerstand zwischen den Klemmen CM und DIx anzuschließen. Wenn sich der Kodierschalter in der Position "PNP" befindet, ist der PTC-Widerstand zwischen den Klemmen DIx und 24 V anzuschließen. Der empfohlene Widerstandswert beträgt $16,5~\mathrm{k}\Omega$.

Da die Genauigkeit von externen PTC-Widerständen herstellungsbedingt schwanken kann, besteht Fehlerpotenzial. Es wird daher ein Thermistorschutzrelais empfohlen.

HINWEIS: Für diese Funktion muss ein doppelt isolierter Motorthermistor verwendet werden.

Tabelle 9-4 Auswahl von Hochlauf/Auslauf

Wechsel zwischen Hochlauf/Auslauf 2 (34)	Wechsel zwischen Hochlauf/Auslauf 1 (18)	Gegenwärtige Hochlauf-/Auslaufzeit	Zugehörige Parameter
0	0	Erste Hochlauf-/Auslaufzeit	F114, F115
0	1	Zweite Hochlauf-/Auslaufzeit	F116, F117
1	0	Dritte Hochlauf-/Auslaufzeit	F277, F278
1	1	Vierte Hochlauf-/Auslaufzeit	F279, F280

9-26 Funktionsparameter

Tabelle 9-5 Anweisungen für mehrstufige Geschwindigkeitsregelung

K4	K3	K2	K1	Frequenzeinstellung	Parameter
0	0	0	0	Mehrstufige Drehzahl 1	F504/F519/F534/F549/F557/F565
0	0	0	1	Mehrstufige Drehzahl 2	F505/F520/F535/F550/F558/F566
0	0	1	0	Mehrstufige Drehzahl 3	F506/F521/F536/F551/F559/F567
0	0	1	1	Mehrstufige Drehzahl 4	F507/F522/F537/F552/F560/F568
0	1	0	0	Mehrstufige Drehzahl 5	F508/F523/F538/F553/F561/F569
0	1	0	1	Mehrstufige Drehzahl 6	F509/F524/F539/F554/F562/F570
0	1	1	0	Mehrstufige Drehzahl 7	F510/F525/F540/F555/F563/F571
0	1	1	1	Mehrstufige Drehzahl 8	F511/F526/F541/F556/F564/F572
1	0	0	0	Mehrstufige Drehzahl 9	F512/F527/F542/F573
1	0	0	1	Mehrstufige Drehzahl 10	F513/F528/F543/F574
1	0	1	0	Mehrstufige Drehzahl 11	F514/F529/F544/F575
1	0	1	1	Mehrstufige Drehzahl 12	F515/F530/F545/F576
1	1	0	0	Mehrstufige Drehzahl 13	F516/F531/F546/F577
1	1	0	1	Mehrstufige Drehzahl 14	F517/F532/F547/F578
1	1	1	0	Mehrstufige Drehzahl 15	F518/F533/F548/F579
1	1	1	1	Keine	Keine

Hinweis: 1. K4 ist die Klemme für mehrstufige Geschwindigkeit 4, K3 ist die Klemme für mehrstufige Geschwindigkeit 3, K2 ist die Klemme für mehrstufige Geschwindigkeit 2, K1 ist die Klemme für mehrstufige Geschwindigkeit 1. 0 steht für OFF, 1 für ON.

0 = OFF, 1 = ON

F326	Watchdog-Zeit	Einstellbereich:	Standardwert: 10,0
		0.0 - 3000.0	
F327	Stoppmodus	Einstellbereich:	Werkseinstellung: 0
	0: Freilauf bis zum Stillstand		
		: Auslauf bis zum Stillstand	

Wenn FA326 = 0,0, ist die Watchdog-Funktion inaktiv.

Wenn F327 = 0 und die mit F326 eingestellte Zeit verstreicht, ohne dass ein Impuls registriert wird, läuft der Wechselrichter frei bis zum Stopp und löst den Fehler Err6 aus.

Wenn F327 = 1 und die mit F326 eingestellte Zeit verstreicht, ohne dass ein Impuls registriert wird, läuft der Wechselrichter bis zum Stopp aus und löst dann den Fehler Err6 aus.

F324 Logik der Freistoppklemme	Einstellbereich: 0: Positive Logik (gültig für Low-Level) 1: Negative Logik (gültig für High-Level)	Standardwert: 0
F325 Logik der Klemme für externen Freilaufstopp		Werkseinstellung: 0
F328 Klemmenfilterzeiten	Einstellbereich: 1 – 100	Standardwert: aus

Wenn die Klemme für mehrstufige Drehzahlregelung auf die Freistoppklemme (8) und die Klemme für den externen Freilaufstopp (9) gesetzt ist, wird die Klemmenlogikebene von dieser Gruppe von Funktionscodes eingestellt. Wenn F324 = 0 und F325 = 0, sind positive Logik und Low-Level aktiv. Wenn F324 = 1 und F325 = 1, sind negative Logik und High-Level aktiv.

F330 Diagnose der DIX-Klemme

Nur lesen

F330 wird verwendet, um die Diagnose der DIX-Klemmen anzuzeigen.

Zur Diagnose von DIX-Klemmen in der ersten Anzeigestelle siehe Abbildung 9-7.

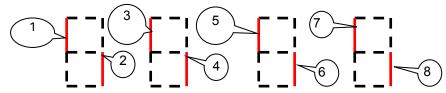


Abbildung 9-7 Status der digitalen Eingangsklemme

① steht für DI1 aktiv.

S steht für DI5 aktiv

② steht für DI2 aktiv.

(6

3 steht für DI3 aktiv.

steht für DI4 aktiv.

4 steht für DI4 aktiv.

8) steht für DI4 aktiv.

9.3.3 Überwachung des Analogeingangs

E	F331	Überwachung AI1	Nur lesen
r	F332	Überwachung Al2	Nur lesen

Wert des Analogeingangs wird von 0 – 4095 angezeigt.

F335	Relaisausgangssimulation	Einstellbereich:	Standardwert: 0
F336	DO1-Ausgangssimulation	0: Ausgang aktiv	Werkseinstellung: 0
F337	DO2-Ausgangssimulation	1: Ausgang inaktiv	Werkseinstellung: 0

Beispiel für die DO1-Ausgangssimulation: Wenn der Wechselrichter sich im Stoppzustand befindet und F336 eingegeben wird, drücken Sie die Taste AUFWÄRTS. Die DO1-Klemme ist aktiv. Lassen Sie die Taste AUFWÄRTS los. DO1 bleibt aktiviert. Wenn F336 beendet wurde, kehrt DO1 zum ursprünglichen Ausgangsstatus zurück.

F338	AO1-Ausgangssimulation	Einstellbereich: 0 – 4095	Einstellbereich: 0 – 4095
F339	AO2-Ausgangssimulation	Einstellbereich: 0 – 4095	Einstellbereich: 0 – 4095

Wenn der Wechselrichter sich im Stoppzustand befindet und F338 eingegeben wird, drücken Sie die Taste AUFWÄRTS. Der Analogausgang nimmt zu. Wenn Sie die Taste ABWÄRTS drücken, sinkt der Analogausgang. Wenn die Parameter beendet werden, kehrt AO1 zum ursprünglichen Ausgangsstatus zurück.

9-28 Funktionsparameter

F340 Auswahl der negativen Logik für die Klemme	Einstellbereich: 0: Inaktiv 1: DI1 negative Logik 2: DI2 negative Logik 4: DI3 negative Logik 8: DI4 negative Logik	Werkseinstellung: 0
	16: DI5 negative Logik	
	32: DI6 negative Logik	
	64: DI7 negative Logik	
	128: DI8 negative Logik	

Wenn Sie z. B. DI1 und DI4 auf negative Logik setzen möchten, setzen Sie F340 = 1 + 8 = 9.

9.4 Analogeingänge und -ausgänge

Wechselrichter der Serie AC10 verfügen über zwei analoge Eingangskanäle und zwei analogen Ausgangskanal.

F400 (V)	Untere Grenze des Kanaleingangs Al1	Einstellbereich: 0,00 – F402	Werkseinstellung: 0,01 V
F401 Grenz	Entsprechende Einstellung für untere e des Eingangs AI1	Einstellbereich: 0 – F403	Standardwert: 1,00
F402 (V)	Obere Grenze des Kanaleingangs Al1	Einstellbereich: F400 – 10,00	Werkseinstellung: 10,00
F403 Grenz	Entsprechende Einstellung für obere e des Eingangs Al1	Einstellbereich: Max (1,00, F401) – 2,00	Standardwert: 2,00
F404 Al1	Proportionalverstärkung K1 des Kanals	Einstellbereich: 0,0 – 10,0	Standardwert: 1,0
F405	Al1 Filterzeitkonstante (s)	Einstellbereich: 0,1 – 10,0	Standardwert: 0,10

Um einen befriedigenden Drehzahlregelungseffekt zu erreichen, muss im Modus der analogen Drehzahlregelung manchmal das Verhältnis zwischen Obergrenze und Untergrenze des Analogeingangswertes, der analogen Veränderungen und der Ausgangsfrequenz angepasst werden.

Die Ober- und Untergrenze des Analogeingangs werden durch F400 und F402 festgelegt.

Beispiel: Wenn F400 = 1 und F402 = 8, wird die analoge Eingangsspannung als 0 betrachtet, wenn sie kleiner als 1 V ist. Wenn die Eingangsspannung über 8 V liegt, wird sie vom System als 10 V behandelt (wenn der Analogkanal 0 – 10 V auswählt). Wenn die Maximalfrequenz F111 auf 50 Hz eingestellt ist, beträgt die 1 – 8 V entsprechende Ausgangsfrequenz 0 – 50 Hz.

Die Filterzeitkonstante wird durch F405 festgelegt.

Je größer die Filterzeitkonstante ist, desto stabiler ist sie für analoge Tests. Die Genauigkeit kann jedoch bis zu einem gewissen Grad sinken. Sie kann eine geeignete Anpassung entsprechend der tatsächlichen Anwendung erfordern.

Die Kanalproportionalverstärkung wird durch F404 eingestellt.

Wenn 1 V einer Frequenz von 10 Hz entspricht und F404 = 2, entspricht 1 V einer Frequenz von 20 Hz.

Entsprechende Einstellungen für die Ober- und Untergrenze des Analogeingangs werden durch F401 und F403 festgelegt.

Wenn die Maximalfrequenz F111 50 Hz beträgt, kann die Analogeingangsspannung von 0 – 10 V durch Einstellen dieser Gruppenfunktionscodes der Ausgangsfrequenz von -50 Hz bis

50 Hz entsprechen. Stellen Sie F401 = 0 und F403 = 2 ein. Dann entspricht eine Spannung von 0 V der Frequenz von -50 Hz, 5 V dem Wert von 0 Hz und 10 V dem Wert von 50 Hz. Die Einheit für die Skalierung der Ober- und Untergrenze der Eingabe wird in Prozent (%) angegeben. Wenn der Wert größer als 1,00 ist, ist er positiv, wenn er kleiner als 1,00 ist, ist er negativ. (z. B. F401 = 0.5 repräsentiert -50 %.)

Wenn die Laufrichtung durch F202 auf Vorwärtslauf eingestellt ist, bewirkt die der Minusfrequenz entsprechende Spannung von 0 – 5 V Rückwärtslauf und umgekehrt.

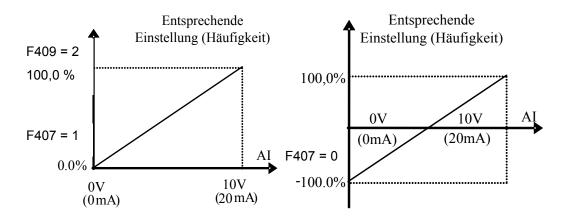
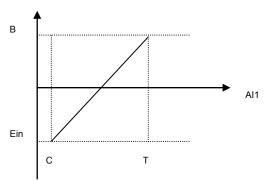



Abbildung 9-8 Entsprechungen zwischen Analogeingang und Einstellung

Die Einheit für die Skalierung der Ober- und Untergrenze der Eingabe wird in Prozent (%) angegeben. Wenn der Wert größer als 1,00 ist, ist er positiv, wenn er kleiner als 1,00 ist, ist er negativ. (z. B. F401 = 0.5 repräsentiert -50 %.)

Die entsprechende Benchmark-Einstellung: Im Modus für die kombinierte Drehzahlregelung ist die sekundäre Frequenz analog und die Benchmark-Einstellung für den Bereich der sekundären Frequenz in Bezug zur Hauptfrequenz ist "Hauptfrequenz X". Die

entsprechende Benchmark-Einstellung in anderen Fällen ist die in der rechten Abbildung dargestellte "Maximalfrequenz":

A= (F401-1)* muss die Maximalfrequenz F112 sein

B= (F403-1)* muss die Maximalfrequenz F111 sein

C= F400

D= F402

F406 Untere Grenze des Kanaleingangs Al2 (V)	Einstellbereich: 0,00 – F408	Standardwert: 0,01
F407 Entsprechende Einstellung für untere Grenze des Eingangs Al2	Einstellbereich: 0 – F409	Standardwert: 1,00
F408 Obere Grenze des Kanaleingangs Al2 (V)	Einstellbereich: F406 – 10,00	Werkseinstellung: 10,00
F409 Entsprechende Einstellung für obere Grenze des Eingangs Al2	Einstellbereich: Max (1,00, F407) – 2,00	Standardwert: 2,00
F410 Proportionalverstärkung K2 des Kanals Al2	Einstellbereich: 0,0 – 10,0	Standardwert: 1,0
F411 Al2 Filterzeitkonstante (s)	Einstellbereich: 0,1 – 50,0	Werkseinstellung: 0,1

9-30 Funktionsparameter

Die Funktion von Al2 entspricht der von Al1.

F418 Tote Zone bei Spannung mit 0 Hz des Kanals Al1	Einstellbereich: 0 – 0,50 V (positiv-negativ)	Standardwert: 0,00
F419 Tote Zone bei Spannung mit 0 Hz des Kanals Al2	Einstellbereich: 0 – 0,50 V (positiv-negativ)	Standardwert: 0,00

Die Analogeingangsspannung 0 – 5 V kann der Ausgangsfrequenz -50 Hz – 50 Hz entsprechen (2,5 V entsprechen 0 Hz), wenn die Funktion der entsprechenden Einstellung für die Ober- und Untergrenze des Analogeingangs vorgenommen wird. Die Gruppenfunktionscodes von F418 und F419 stellen den 0 Hz entsprechenden Spannungsbereich ein. Wenn zum Beispiel F418 = 0,5 und F419 = 0,5, entspricht der Spannungsbereich von (2,5-0,5=2) bis (2,5+0,5=3) der Frequenz von 0 Hz. D. h. also, wenn F418 = N und F419 = N, entspricht 2,5 ±N der Frequenz von 0 Hz. Wenn die Spannung in diesem Bereich liegt, gibt der Wechselrichter 0 Hz aus.

Die tote Zone einer Spannung mit 0 Hz ist aktiv, wenn die entsprechende Einstellung für die untere Grenze des Eingangs kleiner ist als 1,00.

W		
e	Einstellbereich: 0: Lokales Bedienfeld	
nF421 Seitenwahl	1: Fernbedienung	Standardwert: 1
n	2: Lokales Bedienfeld und Fernbedienung	

F421 auf 0 eingestellt ist, ist das lokale Bedienfeld aktiv. Wenn F421 auf 1 eingestellt ist, ist die Fernbedienung aktiv und das lokale Bedienfeld zur Energieeinsparung inaktiv.

Die Fernbedienung ist über ein achtadriges Netzkabel angeschlossen.

AC10 kann einen Analogausgangskanal AO1 zur Verfügung stellen.

F423 Ausgangsbereich AO1	Einstellbereich: 0: 0 – 5 V 1: 0 – 10 V bzw. 0 – 20 mA 2: 4 – 20 mA	Standardwert: 1
F424 Niedrigste entsprechende Frequenz von AO1 (Hz)	Einstellbereich: 0,0 – F425	Standardwert: 0,05
F425 Höchste entsprechende Frequenz von AO1 (Hz)	Einstellbereich: F424 – F111	Werkseinstellung: 50,00
F426 Ausgangskompensation von AO1 (%)	Einstellbereich: 0 – 120	Standardwert: 100

Der Ausgangsbereich von AO1 wird durch F423 gewählt. Wenn F423 = 0, beträgt der Ausgangsbereich von AO1 0 – 5 V. Wenn F423 = 1, beträgt der Ausgangsbereich von AO1 0 – 10 V oder 0 – 20 mA. Wenn F423 = 2, beträgt der Ausgangsbereich von AO1 4 – 20 mA. (Wenn der Ausgangsbereich AO1 das Stromsignal wählt, stellen Sie Schalter J5 in die Position "I".)

Die Entsprechung des Ausgangsspannungsbereichs (0 - 5 V oder 0 - 10 V) zur Ausgangsfrequenz wird durch F424 und F425 eingestellt. Wenn zum Beispiel F423 = 0, F424 = 10 und F425 = 120, gibt der Analogkanal AO1 0 – 5V mit der Ausgangsfrequenz 10 – 120 Hz aus.

Die Ausgangskompensation von AO1 wird durch F426 eingestellt. Die analoge Exkursion kann durch die Einstellung F426 kompensiert werden.

IE/27 Augustangehereich A()2	Einstellbereich:: 0: 0~20mA; 1: 4~20 mA	Standardwert: 0
F428 Höchste entsprechende Frequenz von AO1 (Hz)	ieinsieinereich" U U~E479	Werkseinstellung: 0.05

F429 AO2 highest corresponding frequency (Hz)	IEINSTEIDEREICH" E478~ETTT	Werkseinstellung 50.00
F430 Ausgangskompensation von AO2 (%)	Einstellbereich:: 0∼120	Werkseinstellung: 100

Die Funktion AO2 ist die Saami wie AO1, AO2 Ziel Will Ausgangsstromsignal, Stromsignal von 0-20 mA und 4-20 mA Könnte durch F427 ausgewählt werden.

F431 Auswahl des Analogausgangssignals von AO1	Einstellbereich: 0: Lauffrequenz;	Standardwert: 0
	1: Ausgangsstrom;	
	2: Ausgangsspannung;	
5400 Assessable day	3: Analog Al1	
F432 Auswahl des Analogausgangssignals von AO2	4: Analog Al2	Standardwert: 1
Analogausgangssignals von Aoz	6: Abtriebsdrehmoment;	
	7: Eingegeben durch PC/SPS;	
	8: Zielfrequenz	

Wenn der Ausgangsstrom gewählt wird, reicht das Analogausgangssignal von 0 bis zum zweifachen Nennstrom.

Wenn die Ausgangsspannung gewählt wird, reicht das Analogausgangssignal von 0 V bis zur zweifachen Nennausgangsspannung.

F433 Entsprechender Strom für vollständigen Bereich des externen Voltmeters	Einstellbereich: 0,01 – 5,00-Faches des Nennstroms	Standardwert: 2,00
F434 Entsprechender Strom für vollständigen Bereich des externen Amperemeters		Standardwert: 2,00

Wenn F431 = 1 und AO1 Kanal für Tokenstrom, ist F433 das Verhältnis zwischen dem Messbereich des externen Spannungsamperemeters zum Nennstrom des Wechselrichters.

Wenn F432 = 1 und AO2 Kanal für Tokenstrom, ist F434 das Verhältnis zwischen dem Messbereich des externen Spannungsamperemeters zum Nennstrom des Wechselrichters.

Beispiel: Messbereich des externen Amperemeters ist 20 A und Nennstrom des Wechselrichters ist 8 A, dann ist F433 = 20/8 = 2.50.

J	F437	Breite des Analogfilters	Einstellbereich: 1 – 100	Werkseinstellung: 10
6	7			

höher der Einstellwert von F437 ist, desto gleichmäßiger ist die Analogerkennung und desto langsamer die Reaktionsgeschwindigkeit. Stellen Sie den Wert entsprechend der vorliegenden Situation ein.

F460	Eingangsmodus des Kanals Al1	Einstellbereich: 0: Modus mit geraden Linien	Standardwert: 0
		1: Modus mit winkligen Linien	
F461	Eingangsmodus des Kanals Al2	Einstellbereich: 0: Modus mit geraden Linien 1: Modus mit winkligen Linien	Standardwert: 0
F462	Al1 Einfügepunkt A1 Spannungswert (V)	Einstellbereich: F400 – F464	Standardwert: 2,00
F463	Al1 Einfügepunkt A1 Einstellwert	Einstellbereich: F401 – F465	Standardwert: 1,20
F464	Al1 Einfügepunkt A2 Spannungswert (V)	Einstellbereich: F462 – F466	Standardwert: 5,00

9-32 Funktionsparameter

F465	Al1 Einfügepunkt A2 Einstellwert	Einstellbereich: F463 – F467	Standardwert: 1,50
F466	Al1 Einfügepunkt A3 Spannungswert (V)	Einstellbereich: F464 – F402	Standardwert: 8,00
F467	Al1 Einfügepunkt A3 Einstellwert	Einstellbereich: F465 – F403	Standardwert: 1,80
F468	Al2 Einfügepunkt B1 Spannungswert (V)	Einstellbereich: F406 – F470	Standardwert: 2,00
F469	Al2 Einfügepunkt B1 Einstellwert	Einstellbereich: F407 – F471	Standardwert: 1,20
F470	Al2 Einfügepunkt B2 Spannungswert (V)	Einstellbereich: F468 – F472	Standardwert: 5,00
F471	Al2 Einfügepunkt B2 Einstellwert	Einstellbereich: F469 – F473	Standardwert: 1,50
F472	Al2 Einfügepunkt B3 Spannungswert (V)	Einstellbereich: F470 – F412	Standardwert: 8,00
F473	Al2 Einfügepunkt B3 Einstellwert	Einstellbereich: F471 – F413	Standardwert: 1,80

Wenn der Eingangsmodus des analogen Kanals mit geraden Linien ausgewählt ist, stellen Sie ihn entsprechend den Parametern von F400 bis F429 ein. Wenn der Modus mit winkligen Linien gewählt ist, werden drei Punkte A1(B1), A2(B2), A3(B3) in die Gerade eingefügt, von denen jeder die Frequenz entsprechend der Eingangsspannung einstellen kann. Siehe

Abbildung 9-9:

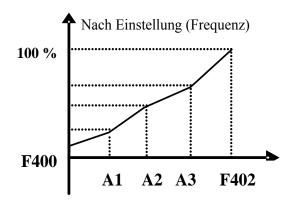


Abbildung 9-9 Winklige Analoglinie mit Einstellwerten

F400 und F402 sind die untere bzw. obere Grenze des Analogeingangs Al1. Wenn F460 = 1, F462 = 2,00 V, F463 = 1.4, F111 = 50, F203 = 1, F207 = 0, dann ist die dem Punkt A1 entsprechende Frequenz (F463-1) * F111 = 20 Hz, was bedeutet, dass 2,00 V einer Frequenz von 20 Hz entsprechen. Die anderen Punkte können auf gleiche Art und Weise eingestellt werden.

9.5 Mehrstufige Drehzahlregelung

Die Funktion für die mehrstufige Drehzahlregelung entspricht einer integrierten SPS im Wechselrichter. Diese Funktion kann die Betriebsdauer, die Laufrichtung und die Lauffrequenz festlegen.

Der Wechselrichter der Serie AC10 ermöglicht den Betrieb mit 15-stufiger Drehzahlregelung und 8-stufiger Drehzahl mit automatischem Zyklus.

Während des Flycatching-Prozesses ist die mehrstufige Drehzahlregelung inaktiv. Nachdem das Flycatching beendet wurde, läuft der Wechselrichter gemäß dem Einstellwert der Parameter mit der Zielfrequenz.

F500 Drehzahlstufentyp	Einstellbereich: 0: 3-stufige Drehzahl; 1: 15-stufige Drehzahl; 2: Max. 8-stufige Drehzahl mit automatischem Zyklus	Standardwert: 1
------------------------	---	-----------------

Im Fall der mehrstufigen Drehzahlregelung (F203 = 4) muss der Benutzer einen Modus mit F500 auswählen. Wenn F500 = 0, ist die 3-stufige Drehzahl ausgewählt. Wenn F500 = 1, ist die 15-stufige Drehzahl ausgewählt. Wenn F500 = 2, ist die max. 8-stufige Drehzahl mit automatischem Zyklus ausgewählt. Wenn F500 = 2 ist der "automatische Zyklus" in die "2-stufige Drehzahl mit automatischem Zyklus", "3-stufige Drehzahl mit automatischem Zyklus" und "8-stufige Drehzahl mit automatischem Zyklus" unterteilt, was mit F501 eingestellt werden muss.

Tabelle 9-6 Auswahl des Betriebsmodus mit mehrstufiger Drehzahl

F203	F500	Betriebsmodus	Beschreibung
4	0	3-stufige Drehzahlregelung	Die Prioritätsreihenfolge ist 1-stufige Drehzahl, 2-stufige Drehzahl und 3-stufige Drehzahl. Sie kann mit einer analogen Drehzahlregelung kombiniert werden. Wenn F207 = 4, hat die "3-stufige Drehzahlregelung" Vorrang vor der analogen Drehzahlregelung.
4	1	15-stufige Drehzahlregelung	Sie kann mit einer analogen Drehzahlregelung kombiniert werden. Wenn F207 = 4, hat die "15-stufige Drehzahlregelung" Vorrang vor der analogen Drehzahlregelung.
4	2	Max. 8-stufige Drehzahl mit automatischem Zyklus	Die manuelle Einstellung der Lauffrequenz ist nicht zulässig. Per Parametereinstellung kann die "2-stufige Drehzahl mit automatischem Zyklus", "3-stufige Drehzahl mit automatischem Zyklus" und "8-stufige Drehzahl mit automatischem Zyklus" ausgewählt werden.

F501 Auswahl der mehrstufigen Drehzahl mit Drehzahlregelung mit automatischem Zyklus	Einstellbereich: 2 – 8	Standardwert: 7
F502 Auswahl der Zyklusanzahl für die Drehzahlregelung mit automatischem Zyklus	Einstellbereich: 0 – 9999 (Wenn der Wert auf 0 gesetzt ist, führt der Wechselrichter einen Endloszyklus aus.)	Standardwert: 0
F503 Status nach automatischem Zyklus Betrieb beendet.	Einstellbereich: 0: Stopp 1: Betrieb auf letzter Drehzahlstufe fortsetzen	Werkseinstellung: 0

9-34 Funktionsparameter

Wenn der Betriebsmodus die Drehzahlregelung mit automatischem Zyklus ist (F203 = 4 und F500 = 2), legen Sie die zugehörigen Parameter mit F501 – F503 fest.

Der Wechselrichter durchläuft während der Drehzahlregelung mit automatischem Zyklus die voreingestellten Drehzahlstufen jeweils ein Mal. Dies wird als Zyklus bezeichnet.

Wenn F502 = 0, durchläuft der Wechselrichter einen Endloszyklus, der durch ein "Stopp"-Signal beendet wird.

Wenn F502>0, läuft der Wechselrichter im automatischen Zyklusbetrieb. Wenn der automatische Zyklus die voreingestellte Zyklusanzahl erreicht hat (durch F502 festgelegt), beendet der Wechselrichter den bedingten automatischen Zyklusbetrieb. Wenn der Wechselrichter weiterläuft und die voreingestellte Zyklusanzahl nicht erreicht ist, stoppt der Wechselrichter, wenn er einen "Stopp-Befehl" empfängt. Wenn der Wechselrichter wieder einen "Laufbefehl" empfängt, setzt er den automatischen Zyklus mit der durch F502 festgelegten Zyklusanzahl fort.

Wenn F503 = 0, stoppt der Wechselrichter nach Abschluss des automatischem Zyklus. Wenn F503 = 1, läuft der Wechselrichter nach Abschluss des automatischen Zyklus wie folgt mit der Drehzahl der letzten Stufe weiter:

Wenn z. B. F501 = 3, läuft der Wechselrichter in einem automatischen Zyklus mit 3-stufiger Drehzahl.

Wenn F502 = 100, durchläuft der Wechselrichter den automatischem Zyklus 100 Mal.

Wenn F503 = 1, läuft der Wechselrichter nach Abschluss des automatischen Zyklus mit der Drehzahl der letzten Stufe weiter.

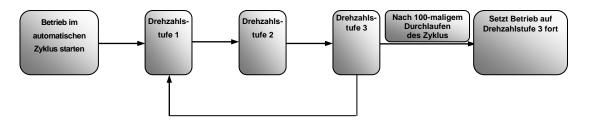


Abbildung 9-10 Automatischer Zyklusbetrieb

Der Wechselrichter kann dann während des automatischen Zyklusbetriebs durch Drücken von "O" oder Senden eines "O"-Signals über die Klemme gestoppt werden.

F504	Frequenzeinstellung für Drehzahlstufe 1 (Hz)	Einstellbereich: F112 – F111	Standardwert: 5,00
F505	Frequenzeinstellung für Drehzahlstufe 2 (Hz)		Standardwert: 10,00
F506	Frequenzeinstellung für Drehzahlstufe 3 (Hz)		Standardwert: 15,00
F507	Frequenzeinstellung für Drehzahlstufe 4 (Hz)		Standardwert: 20,00
F508	Frequenzeinstellung für Drehzahlstufe 5 (Hz)		Standardwert: 25,00
F509	Frequenzeinstellung für Drehzahlstufe 6 (Hz)		Standardwert: 30,00
F510	Frequenzeinstellung für Drehzahlstufe 7 (Hz)		Standardwert: 35,00
F511	Frequenzeinstellung für Drehzahlstufe 8 (Hz)		Standardwert: 40,00
F512	Frequenzeinstellung für Drehzahlstufe 9 (Hz)		Standardwert: 5,00
F513	Frequenzeinstellung für Drehzahlstufe 10 (Hz)		Standardwert: 10,00

F514 Frequenzeinstellung für Drehzahlstufe 11 (Hz)		Standardwert:
		15,00
F515 Frequenzeinstellung für Drehzahlstufe 12 (Hz)		Standardwert: 20,00
F516 Frequenzeinstellung für Drehzahlstufe 13 (Hz)		Standardwert: 25,00
F517 Frequenzeinstellung für Drehzahlstufe 14 (Hz)		Standardwert: 30,00
F518 Frequenzeinstellung für Drehzahlstufe 15 (Hz)		Standardwert: 35,00
F519 – F533 Hochlaufzeiteinstellung für die Drehzahlen von Stufe 1 bis Stufe 15 (s)	Einstellbereich: 0,1 – 3000	Madallabhännin
F534 – F548 Auslaufzeiteinstellung für die Drehzahlen von Stufe 1 bis Stufe 15 (s)	Einstellbereich: 0,1 – 3000	Modellabhängig
F549 – F556 Laufrichtungen für Drehzahlstufen von Stufe 1 bis Stufe 8	Einstellbereich: 0: Vorwärtslauf; 1: Rückwärtslauf	Standardwert: 0
F557 – F564 Betriebsdauer für Drehzahlstufen von Stufe 1 bis Stufe 8 (s)	Einstellbereich: 0,1 – 3000	Standardwert: 1,0
F565 – F572 Stoppzeit nach Durchlaufen der Drehzahlstufen von Stufe 1 bis Stufe 8 (s)	Einstellbereich: 0,0 – 3000	Standardwert: 0,0
F573 – F579 Laufrichtungen für Drehzahlstufen von Stufe 9 bis Stufe 15	Einstellbereich: 0: Vorwärtslauf; 1: Rückwärtslauf	Standardwert: 0

9.6 Hilfsfunktionen

F600 Auswahl der Gleichstrombremsfunktion	Einstellbereich: 0: Inaktiv, 1: Bremsen vor dem Start 2: Bremsen beim Stoppen 3: Bremsen beim Starten und Stoppen	Standardwert: 0
F601 Anfangsfrequenz für Gleichstrombremsung (Hz)	Einstellbereich: 0,20 – 5,00	Werkseinstellung: 1,00
F602 Gleichstrombremswirkung vor dem Start	Einstellbereich: 0 – 100	Standardwert:
F603 Gleichstrombremswirkung beim Stoppen		aus
F604 Bremsdauer vor dem Start (s)	Einstellbereich: 0,0 –	Standardwert: 0,5
F605 Bremsdauer beim Stoppen (s)	10,0	Staridardwert. 0,5

Wenn F600 = 0, ist die Gleichstrombremsfunktion inaktiv.

9-36 Funktionsparameter

Wenn F600 = 1, ist die Bremsung vor dem Start aktiv. Nach Eingabe des richtigen Startsignals beginnt der Wechselrichter mit der Gleichstrombremsung. Nach Abschluss der Bremsung läuft der Wechselrichter mit der Anfangsfrequenz.

Bei bestimmten Anwendungen wie Lüftern, bei denen der Motor mit geringer Drehzahl oder rückwärts läuft, führt das sofortige Starten des Wechselrichters zu einem Überstromfehler. Durch Aktivierung der "Bremsung vor dem Start" wird sichergestellt, dass der Lüfter vor dem Start stillsteht, um diese Fehlfunktion zu vermeiden.

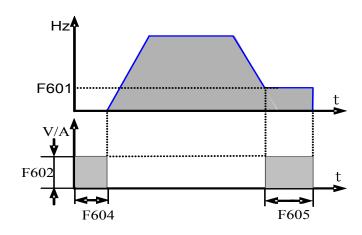


Abbildung 9-11 Gleichstrombremsung

Wenn während der "Bremsung vor dem Start" ein "Stopp"-Signal ausgegeben wird, stoppt der Wechselrichter innerhalb der Auslaufzeit.

Wenn F600 = 2, ist die Gleichstrombremsung während des Stoppens aktiv. Wenn die Ausgangsfrequenz niedriger als die Anfangsfrequenz für die Gleichstrombremsung (F601) ist, stoppt die Gleichstrombremsung den Motor sofort.

Wird beim Bremsprozess während des Stoppens ein "Start"-Signal ausgegeben, wird die Gleichstrombremsung beendet und der Wechselrichter startet.

Wird beim Bremsprozess während des Stoppens ein "Stopp"-Signal ausgegeben, reagiert der Wechselrichter nicht und die Gleichstrombremsung während des Stoppens wird fortgesetzt.

Parameter für die "Gleichstrombremsung": F601, F602, F603, F604, F605 und F606, wie folgt interpretiert:

- a) F601: Anfangsfrequenz der Gleichstrombremsung. Die Gleichstrombremsung beginnt, wenn die Ausgangsfrequenz des Wechselrichters geringer als dieser Wert ist.
- b) F604: Bremsdauer vor dem Start. Die Zeit, für die die Gleichstrombremsung aktiv ist, bevor der Wechselrichter startet.
- c) F605: Bremsdauer beim Stoppen. Die Zeit, für die die Gleichstrombremsung aktiv ist, während der Wechselrichter stoppt.

Hinweis: Während der Gleichstrombremsung kann sich der Motor, da keine Eigenkühlung durch Rotation erfolgt, leicht überhitzen. Legen Sie keine zu hohe Spannung für die Gleichstrombremsung fest und stellen Sie die Dauer der Gleichstrombremsung nicht zu lang ein.

Gleichstrombremsung, wie in Abbidung 9-11 gezeigt.

F607 Auswahl der Blockiereinstellungsfunktion	Einstellbereich: 0: Inaktiv, 1: Aktiv 2: Reserviert 3: Spannungs-/Stromregelung 4: Spannungsregelung 5: Stromregelung	Standardwert: 0
F608 Einstellung des Blockierstroms (%)	Einstellbereich: 60 – 200	Werkseinstellung: 160
F609 Einstellung der Blockierspannung (%)	Einstellbereich: 110 – 200	Werkseinstellung: 1 Phase: 130 3 Phasen: 140
F610 Beurteilungszeit für Blockierschutz (s)	Einstellbereich: 0,1 – 3000,0	Standardwert: 60,0

F607 wird verwendet, um die Auswahl der Blockiereinstellungsfunktion einzustellen.

Spannungsregelung: Wenn der Motor schnell stoppt oder die Last sich plötzlich verändert, ist die DC-Bus-Spannung hoch. Die Spannungsregelungsfunktion kann die Auslaufzeit und die Ausgangsfrequenz anpassen, um Überspannung zu vermeiden.

Wenn ein Bremswiderstand oder eine Bremseinheit verwendet wird, sollten Sie die Spannungsregelungsfunktion nicht verwenden, da andernfalls die Auslaufzeit verändert wird.

Stromregelung: Wenn der Motor schnell hochläuft oder die Last sich plötzlich verändert, kann der Wechselrichter einen Überstromfehler auslösen. Die Stromregelungsfunktion kann die Hochlauf- bzw. Auslaufzeit anpassen oder die Ausgangsfrequenz reduzieren, um einen ordnungsgemäßen Stromwert sicherzustellen. Sie ist nur im VF-Regelungsmodus aktiv.

Hinweis: (1) Die Spannungs-/Stromregelung eignet sich nicht für Hebeanwendungen.

(2) Diese Funktion verändert die Hochlauf- bzw. Auslaufzeit. Bitte verwenden Sie diese Funktion ordnungsgemäß.

Der Anfangswert für die Einstellung des Blockierstroms wird durch F608 festgelegt. Wenn der anliegende Strom höher als der Nennstrom *F608 ist, dann ist die Blockierstrom-Einstellungsfunktion aktiv.

Während des Verzögerungsprozesses ist die Blockierstromfunktion inaktiv.

Wenn während des Hochlaufprozesses der Ausgangsstrom höher als der Anfangswert für die Blockierstromeinstellung und F607 = 1 ist, dann ist die Blockiereinstellungsfunktion aktiv. Der Wechselrichter beschleunigt nicht, bis der Ausgangsstrom geringer als der Anfangswert für die Blockierstromeinstellung ist.

Im Fall einer Blockierung während des Betriebs mit stabiler Drehzahl fällt die Frequenz ab. Wenn der Strom während einer Blockierung wieder normal wird, steigt die Frequenz wieder an. Andernfalls fällt die Frequenz weiter ab und der Schutz OL1 wird ausgelöst, wenn der Zustand länger als für die in F610 festgelegte Dauer anhält.

Der Anfangswert für die Einstellung der Blockierspannung wird durch F609 festgelegt. Wenn die vorliegende Spannung höher als die Nennspannung *F609 ist, dann ist die Blockierspannungs-Einstellungsfunktion aktiv.

Die Blockierspannungseinstellung ist während des Verzögerungsprozesses aktiv, einschließlich der durch Blockierstrom bewirkten Verzögerung.

Überspannung bedeutet, dass die DC-Bus-Spannung zu hoch ist und wird in der Regel durch Verzögerung verursacht. Während des Verzögerungsprozesses steigt die DC-Bus-Spannung aufgrund der Energierückspeisung an. Wenn die DC-Bus-Spannung höher als der Anfangswert für die Blockierspannung und F607 = 1 ist, dann ist die Blockiereinstellungsfunktion aktiv. Der Wechselrichter stoppt vorübergehend die Verzögerung und hält die Ausgangsfrequenz konstant, was wiederum die Energierückspeisung an den Wechselrichter stoppt. Der Wechselrichter verzögert nicht, bis die DC-Bus-Spannung geringer als der Anfangswert für die Blockierspannung ist.

Die Beurteilungszeit für den Blockierschutz wird durch F610 festgelegt. Wenn der Wechselrichter die Blockiereinstellungsfunktion startet und für die durch F610 eingestellte Zeit fortsetzt, stoppt er den Betrieb und der Schutz OL1 löst aus.

F611 Schwellenwert für dynamische Bremsung	Einstellbereich: 200 – 1000	Modellabhängig
F612 Relative Einschaltdauer für dynamische Bremsung (%)	Einstellbereich: 0 – 100 %	Standardwert: 80

Die Anfangsspannung für den dynamischen Bremstransistor wird durch F611 in Volt festgelegt. Wenn die DC-Bus-Spannung höher als der Einstellwert dieser Funktion ist, startet die dynamische Bremsung und die Bremseinheit beginnt zu arbeiten. Sobald die DC-Bus-Spannung geringer als der Einstellwert ist, wird die Bremseinheit abgeschaltet.

Die relative Einschaltdauer für die dynamische Bremsung wird durch F612 festgelegt, der Einstellbereich beträgt 0 – 100 %. Ein höherer Wert verbessert die Bremswirkung, führt jedoch auch zu einer höheren Temperatur des Bremswiderstands.

9-38 Funktionsparameter

F613 Flycatching	Einstellbereich: 0: Inaktiv 1: Aktiv 2: Aktiv beim ersten Mal	Werkseinstellung: 0
------------------	---	------------------------

Wenn F613 = 0, ist die Flycatching-Funktion inaktiv.

Wenn F613 = 1, ist die Flycatching-Funktion aktiv.

Nachdem der Wechselrichter sich auf die Motordrehzahl und Drehrichtung abgestimmt hat, beginnt er entsprechend der erkannten Frequenz den laufenden Motor sanft zu starten. Diese Funktion eignet sich für folgende Situationen: automatischer Start nach erneutem Einschalten, automatischer Start nach Rückstellung, automatischer Start bei aktivem Laufbefehl und automatischer Start bei inaktivem Laufbefehl.

Wenn F613 = 2, ist die Funktion beim ersten Mal nach dem Wiedereinschalten des Wechselrichters aktiv.

Hinweis: Geschwindigkeitsstrecke Funktion ist nur gültig, wenn F106 = 2 oder 3.

F614 Flycatching-Modus	Einstellbereich: 0: Flycatching aus Frequenzspeicher 1: Flycatching aus Maximalfrequenz 2: Flycatching aus Frequenzspeicher und Richtungsspeicher 3: Flycatching aus Maximalfrequenz und Frequenzspeicher	Werkseinstellung: 0
	' '	

Wenn F614 auf 0 oder 1 gesetzt ist und die gespeicherte Frequenz oder Maximalfrequenz unter 10,00 Hz liegt, stimmt der Wechselrichter sich ab 10,00 Hz auf die Frequenz ab.

Wenn der Wechselrichter abgeschaltet wird, speichert er die aktive Zielfrequenz. In anderen Situationen (der Wechselrichter hat vor dem Stopp keinen Ausgang), speichert der Wechselrichter vor dem Stopp die derzeitige Frequenz.

Dieser Parameter wird zum Starten und Stoppen von Motoren mit hoher Trägheit verwendet. Motoren mit hoher Trägheit brauchen lange, um vollständig zum Stillstand zu kommen. Indem Sie diesen Parameter setzen, brauchen Sie nicht mehr zu warten, bis der Motor vollständig zum Stillstand kommt, bevor Sie den Wechselstrommotorantrieb starten können.

F615 Flycatching-Geschwii	ndigkeit Einstellbereich: 1 – 100	Standardwert: 20
---------------------------	-----------------------------------	------------------

Diese Funktion wird verwendet, um das Flycatching für die Drehgeschwindigkeit zu wählen, wenn der Wiedereinschaltmodus mit Drehzahlabstimmung verwendet wird. Je größer der Parameter, desto schneller ist das Flycatching. Wenn der Parameter zu groß ist, kann dies zu einer unzuverlässigen Abstimmung führen.

W eF619 Flycatching-Fehlertimeout	Einstellbereich: 0,0 – 3000,0 s	Werkseinstellung: 60,0 s
--------------------------------------	---------------------------------	-----------------------------

n F619 = 0, ist die Funktion inaktiv. Wenn F619 ≠ 0, ist die Funktion aktiv. Wenn die Flycatching-Zeit länger als der Einstellwert von F619 ist, wird ein FL-Fehler ausgelöst.

PF627 Strombegrenzung beim Flycatching	50 – 200	100
---	----------	-----

ser Funktionscode wird verwendet, um den Such- und Ausgangsstrom beim Flycatching zu begrenzen.

W e nF622 n	Dynamischer Bremsmodus	Einstellbereich: 0: Feste relative Einschaltdauer 1: Automatische relative Einschaltdauer	Standardwert: 1
----------------------	------------------------	---	-----------------

622 = 0, ist die feste relative Einschaltdauer aktiv. Wenn die Bus-Leitungsspannung den durch F611 festgelegten Energieverbrauchs-Bremspunkt erreicht, beginnt das Bremsmodul mit der dynamischen Bremsung gemäß F612.

Wenn F622 = 1, ist die automatische relative Einschaltdauer aktiv. Wenn die Bus-Leitungsspannung den durch F611 festgelegten Schwellenwert für dynamische Bremsung erreicht, beginnt das Bremsmodul mit der dynamischen Bremsung gemäß der Einschaltdauer, die durch die Bus-Leitungsspannung eingestellt wird. Je höher die Bus-Leitungsspannung, desto länger ist die Einschaltdauer und desto höher ist die Bremswirkung. Der Bremswiderstand wird jedoch heißer.

F631 Auswahl für Gleichspannungseinstellung	0: Inaktiv 1: Aktiv 2: Reserviert	Modellabhängig
F632 Zielspannung des Gleichspannungsstellers (V)	Einstellbereich: 200 – 800	

Wenn F631 = 1, ist die Gleichspannungs-Einstellungsfunktion aktiv. Wenn bei laufendem Motor die PN-Bus-Spannung durch eine Lastveränderung plötzlich ansteigt, löst der Überspannungsschutz aus. Die Gleichspannungseinstellung wird verwendet, um die Spannung stabil zu halten, indem die Ausgangsfrequenz angepasst oder das Bremsmoment reduziert wird.

Wenn die DC-Bus-Spannung höher als der Einstellwert von F632 ist, passt der Gleichspannungssteller die Bus-Spannung automatisch auf denselben Wert wie F632 an.

VDC Einstellung ist ungültig, wenn F106 = 6.

F650 Hochfrequenzleistung	Einstellbereich: 0: Inaktiv 1: Klemme aktiviert 2: Modus 1 aktiviert 3: Modus 2 aktiviert	Standardwert: 2
F651 Umschaltfrequenz 1	Einstellbereich: F652 – 150,00	Standardwert: 100,0
F652 Umschaltfrequenz 2	Einstellbereich: 0 – F651	Standardwert: 95,00

F650 ist aktiv im Vektorregelungsmodus.

Modus 1 aktiviert: Wenn die Frequenz höher als F651 ist, führt der Wechselrichter eine optimierte Berechnung für die Hochfrequenzleistung aus. Wenn die Frequenz niedriger als F652 ist, wird die Berechnung gestoppt.

Modus 2 aktiviert: Wenn die Frequenz höher als F651 ist, führt der Wechselrichter eine optimierte Berechnung aus, bis er stoppt.

Klemme aktiviert: Wenn die Funktion der DIX-Klemme auf 48 gesetzt ist, führt der Wechselrichter eine optimierte Berechnung aus, wenn die DIX-Klemme aktiv ist.

Hinweis: Für die 30 kW 30 kW und darüber gibt es keine diese Funktion.

9-40 Funktionsparameter

9.7 Funktionsstörung und Schutz

F700 Auswahl des Freistoppmodus für die Klemme	Einstellbereich: 0: sofortiger Freistopp; 1: verzögerter Freistopp	Standardwert: 0
F701 Verzögerungszeit für Freistopp und programmierbare Klemmenaktion	Einstellbereich: 0,0 – 60,0	Standardwert: 0,0

"Auswahl des Freistopp-Modus" kann nur für den durch die Klemme gesteuerten "Freistopp"-Modus verwendet werden. Die zugehörige Parametereinstellung ist F201 = 1, 2, 4 und F209 = 1.

Wenn "Sofortiger Freistopp" ausgewählt wird, ist die Verzögerungszeit (F701) inaktiv und der Wechselrichter führt sofort einen Freistopp aus.

"Verzögerter Freistopp" bedeutet, dass der Wechselrichter nach Erhalt des "Freistopp"-Signals den "Freistopp"-Befehl mit einer gewissen Verzögerung ausführt, anstatt sofort zu stoppen. Die Verzögerungszeit wird durch F701 festgelegt.

F702 Lüfterregelungsmodus	Temperaturgesteuert Betrieb, wenn der Wechselrichter eingeschaltet wird. Gesteuert durch Laufstatus	Standardwert: 2
---------------------------	---	-----------------

Wenn F702 = 0, läuft der Lüfter, wenn die Kühlkörpertemperatur über der Einstelltemperatur liegt.

Wenn F702 = 2, läuft der Lüfter, sobald der Wechselrichter zu laufen beginnt. Wenn der Wechselrichter stoppt, läuft der Lüfter weiter, bis die Kühlkörpertemperatur geringer als die Einstelltemperatur ist.

F704 Koeffizient für Voralarm bei Wechselrichter-Überlast (%)	Einstellbereich: 50 – 100	Standardwert: 80
F705 Koeffizient für Voralarm bei Motorüberlast (%)	Einstellbereich: 50 – 100	Standardwert: 80
F706 Koeffizient für Wechselrichter-Überlast (%)	Einstellbereich: 120 – 190	Standardwert: 150
F707 Koeffizient für Motorüberlast (%)	Einstellbereich: 20 – 100	Standardwert: 100

Koeffizient für Wechselrichter-Überlast: Das Verhältnis des Überlast-Schutzstroms und des Nennstroms, dessen Wert von der tatsächlichen Last abhängt.

Koeffizient für Motorüberlast (F707): Wenn der Wechselrichter einen Motor mit geringerer Leistung antreibt, stellen Sie den Wert von F707 mit der folgenden Formel ein, um den Motor zu schützen.

Koeffizient für Motorüberlast = Motornennleistung ×100 %

Wechselrichternennleistung

Stellen Sie F707 gemäß der vorliegenden Situation ein. Je niedriger der Einstellwert von F707, desto schneller reagiert der Überlastschutz. Siehe Abbildung 9-12.

Beispiel: 7,5-kW-Wechselrichter, 5,5-kW-Motor, F707 = 5,5/7,5 ×100 %≈70 %. Wenn der tatsächliche Motorstrom 140 % des Nennstroms des Wechselrichters erreicht, wird der Wechselrichter-Überlastschutz nach 1 Minute aktiviert.

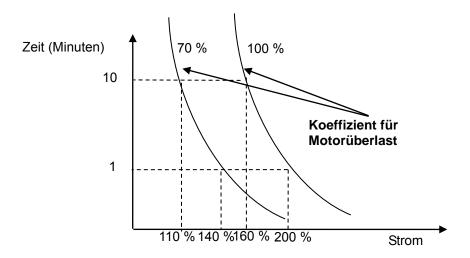


Abbildung 9-12 Koeffizient für Motorüberlast

Wenn die Ausgangsfrequenz unter 10 Hz beträgt, verschlechtert sich die Wärmeableitung herkömmlicher Motoren. Wenn die Lauffrequenz unter 10 Hz beträgt, wird daher der Schwellenwert für die Motorüberlast herabgesetzt. Siehe Abbildung 9-13 (F707 = 100 %):

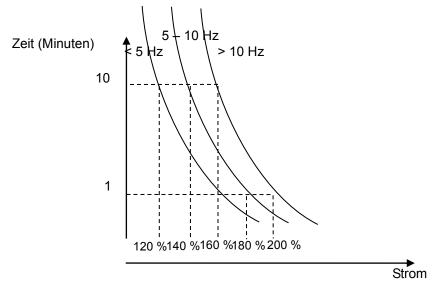


Abbildung 9-13 Wert für Motorüberlastschutz

9-42 Funktionsparameter

F708	Erfassung des letzten Störungstyps	Einstellbereich:	
F709	Erfassung des Störungstyps für zweitletzte	2: Überstrom (OC) 3: Überspannung (OE)	
	Störung	4: Ausfall der	
F710	Erfassung des Störungstyps für drittletzte Störung	Eingangsphase (PF1) 5: Wechselrichter- Überlast (OL1) 6: Unterspannung (LU) 7: Überhitzung (OH) 8: Motorüberlast (OL2) 11: Externe Störung (ESP) 12: Stromfehler vor Betrieb (Err3) 13: Analyseparameter ohne Motor (Err2) 15: Stromabtastfehler (Err4) 16: Überstrom 1 (OC1) 17: Ausfall der Ausgangsphase (PF0) 18: Aerr Analoge Leitung getrennt 23: PID-Parameter falsch festgelegt (Err5) 45: Kommunikations- Timeout (CE)	
		46: Flycatching-Fehler (FL) 49: Watchdog-Fehler (Err6)	
		67: Overcurrent (OC2)	
F711	Fehlerfrequenz für letzte Störung		
F712	Fehlerstrom für letzte Störung		
F713	Fehler-PN-Spannung für letzte Störung		
F714	Fehlerfrequenz für zweitletzte Störung		
F715	Fehlerstrom für zweitletzte Störung		
F716	Fehler-PN-Spannung für zweitletzte Störung		
F717	Fehlerfrequenz für drittletzte Störung		
F718	Fehlerstrom für drittletzte Störung		
F719	Fehler-PN-Spannung für drittletzte Störung		
F720	Erfassung von Überstromschutz-Fehlerzeiten		
F721	Erfassung von Überspannungsschutz-Fehlerzeiten		
F722	Erfassung von Überhitzungsschutz-Fehlerzeiten		
F723	Erfassung von Überlastschutz-Fehlerzeiten		
F724	Ausfall der Eingangsphase	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 1
F726	Überheizen	Einstellbereich:	Standardwert: 1

		0: Inaktiv; 1: Aktiv	
F727	Ausfall der Ausgangsphase	Einstellbereich: 0: Inaktiv; 1: Aktiv	Standardwert: 0
F728	Ausfall der Eingangsphasen-Filterungskonstante (s)	Einstellbereich: 0,1 – 60,0	Standardwert: 0,5
F730	Überhitzungsschutz-Filterungskonstante (s)	Einstellbereich: 0,1 – 60,0	Standardwert: 5,0
F732	Spannungsschwelle für Unterspannungsschutz (V)	Einstellbereich: 0 – 450	Modellabhängig

[&]quot;Unterspannung" bezeichnet eine zu geringe Spannung auf der AC-Eingangsseite.

"Ausfall der Eingangsphase" bezeichnet einen Phasenausfall der 3-phasigen Stromversorgung. Diese Funktion ist bei Wechselrichtern mit einer Leistung von 5,5 kW und darunter nicht vorhanden.

"Ausfall der Ausgangsphase" bezeichnet einen Phasenausfall in der Dreiphasenverkabelung oder den Motorkabeln des Wechselrichters.

Die "Phasenausfall"-Signalfilterungskonstante wird zur Eliminierung von Störungen zur Vermeidung von Fehlauslösungen von Schutzfunktionen verwendet. Je höher der eingestellte Wert, desto länger die Filterzeitkonstante und desto besser die Filterwirkung.

F737 Überstrom 1-Schutz	Einstellbereich: 0: Inaktiv 1: Aktiv	Standardwert: 1
F738 Koeffizient für Überstrom 1-Schutz	Einstellbereich: 0,50 – 3,00	Standardwert: 2,50
F739 Erfassung von Überstrom 1-Schutzauslösungen		

F738 = OC 1-Wert/Wechselrichter-Nennstrom.

Bei laufendem Wechselrichter kann F738 nicht bearbeitet werden. Wenn ein Überstrom auftritt, wird OC1 angezeigt.

F741 Schutz vor Trennung des Analogsignals	Einstellbereich: 0: Inaktiv 1: Anzeige von Stopp und AErr. 2: Stopp und AErr werden nicht angezeigt. 3: Wechselrichter läuft mit Minimalfrequenz. 4: Reserviert	Standardwert: 0
F742 Schwellenwert für Schutz vor Trennung des Analogsignals (%)	Einstellbereich: 1 – 100	Standardwert: 50

Wenn die Werte von F400 und F406 geringer als 0,01 V wird, ist der Schutz vor Trennung des Analogsignals inaktiv.

Wenn F741 auf 1, 2 oder 3 gesetzt ist, sollten die Werte von F400 und F406 auf 1 V-2 V gesetzt werden, um Störungen des Fehlerschutzes durch Interferenzen zu vermeiden.

Spannung für Schutz vor Trennung des Analogsignals = Untergrenze des Analogeingangs * F742. Beim Kanal Al1 beispielsweise wird, wenn F400 = 1,00 und F742 = 50 der Trennungsschutz aktiviert, wenn die Spannung des Kanals Al1 unter 0,5 V beträgt.

9-44 Funktionsparameter

F745 Schwellenwert für Voralarm bei Überhitzung (%)	Einstellbereich: 0 – 100	Standardwert: 80
F747 Autom. Einstellung der Trägerfrequenz	Einstellbereich: 0: Inaktiv 1: Aktiv	Standardwert: 1

Wenn die Temperatur des Kühlkörpers 95 °C erreicht, werden X F745 und die Multifunktionsausgangsklemme auf 16 gesetzt (siehe F300 – F302). Dies gibt an, dass der Wechselrichter überhitzt ist.

Wenn F747 = 1 und die Temperatur des Kühlerkörpers 86 °C erreicht, wird die Trägerfrequenz des Wechselrichters automatisch angepasst, um die Temperatur des Wechselrichters zu senken. Diese Funktion kann eine Funktionsstörung durch Überhitzung vermeiden.

Wenn F159 = 1, wird eine zufällige Trägerfrequenz ausgewählt und F747 ist ungültig.

Wenn F106 = 6, Trägerfrequenz selbst Verstellfunktion ist ungültig.

F754	Nullstrom-Schwellenwert (%)	Einstellbereich: 0 – 200	Standardwert: Elektrische Installation
F755	Nullstromdauer (s)	Einstellbereich: 0 – 60	Standardwert: 0,5

Wenn der Ausgangsstrom auf den Nullstrom-Schwellenwert gefallen ist, wird nach der Nullstrom-Periode ein ON-Signal ausgegeben.

9.8 Motorparameter

F800 Abstimmung der Motorparameter	Einstellbereich: 0: Inaktiv, 1: Abstimmung bei laufendem Motor; 2: Abstimmung bei stehendem Motor	Werkseinstellung: 0
F801 Nennleistung (kW)	Einstellbereich: 0,75 – 1000	
F802 Nennspannung (V)	Einstellbereich: 1 – 440	
F803 Nennstrom (A)	Einstellbereich: 0,1 – 6500	
F804 Anzahl der Motorpole	Einstellbereich: 2 – 100	4
F805 Nenndrehzahl (U/min)	Einstellbereich: 1 – 30000	
F810 Motornennfrequenz (Hz)	Einstellbereich: 1,0 – 590,0	50,00

Stellen Sie die Parameter gemäß den Angaben auf dem Typenschild des Motors ein.

Um eine adäquate Funktion der Vektorregelung sicherzustellen, müssen die Parameter des Motors präzise abgestimmt werden. Dazu müssen die Nenndaten des Motors richtig eingegeben werden.

Um eine optimale Regelungsleistung zu erzielen, konfigurieren Sie den Motor in Übereinstimmung mit dem anpassbaren Motor des Wechselrichters. Bei zu großen Abweichungen zwischen der tatsächlichen Motorleistung und der Leistung des anpassbaren Motors des Wechselrichters lässt die Regelungsleistung des Wechselrichters deutlich nach.

F800 = 0, Parameterabstimmung inaktiv. Sie müssen jedoch dennoch die Parameter F801 – F803, F805 und F810 gemäß den Angaben auf dem Typenschild des Motors einstellen.

Nach dem Einschalten verwendet der Wechselrichter die Standardparameter des Motors (siehe Wert von F806 – F809) gemäß der in F801 festgelegten Motorleistung. Dieser Wert dient für die vierpoligen Asynchronmotoren der Y-Reihe nur zur Orientierung.

F800 = 1, Abstimmung bei drehendem Motor.

Um eine dynamische Regelungsleistung des Wechselrichters sicherzustellen, wählen Sie "Abstimmung bei laufendem Motor", nachdem Sie sich vergewissert haben, dass der Motor von der Last getrennt ist. Stellen Sie F801 – 805 und F810 vor den Probeläufen ein.

Vorgehensweise für Abstimmung bei laufendem Motor: Drücken Sie die Taste "I" auf dem Tastenfeld. Daraufhin wird "TEST"angezeigt und die Motorparameter werden in zwei Stufen abgestimmt. Danach beschleunigt der Motor gemäß der in F114 festgelegten Hochlaufzeit und hält diese für einen bestimmten Zeitraum. Der Motor bremst dann gemäß der in F115 festgelegten Zeit auf 0 ab. Nach Abschluss der automatischen Überprüfung werden die relevanten Parameter des Motors in den Funktionscodes F806 – F809 gespeichert und F800 wird automatisch auf 0 gesetzt.

F800 = 2, Abstimmung im Stillstand.

Dieses Verfahren eignet sich für manche Fälle, in denen es nicht möglich ist, den Motor von der Last zu trennen.

Drücken Sie die Taste "I" auf dem Tastenfeld. Daraufhin zeigt der Wechselrichter "TEST" an und stimmt die Motorparameter in zwei Stufen ab. Der Statorwiderstand, Rotorwiderstand und die Streuinduktivität werden automatisch in F806 – F809 gespeichert (die Gegeninduktivität des Motors verwendet den leistungsabhängig generierten Standardwert) und F800 wird automatisch auf 0 gesetzt. Sie können die Gegeninduktivität auch gemäß den tatsächlichen Motorbedingungen manuell berechnen und eingeben. Bitte wenden Sie sich wegen der Berechnungsformel und -methode an Parker.

Während der Abstimmung der Motorparameter läuft der Motor nicht, steht jedoch unter Spannung. Berühren Sie den Motor während dieses Vorgangs nicht.

9-46 Funktionsparameter

*Hinweis:

- 1. Geben Sie die Motordaten unabhängig von der verwendeten Abstimmungsmethode für die Motorparameter (F801 F805) korrekt gemäß den Angaben auf dem Typenschild des Motors ein. Wenn der Bediener mit dem Motor gut vertraut ist, kann er alle Motorparameter (F806 F809) manuell eingeben.
- 2. Parameter F804 kann nur abgerufen, jedoch nicht geändert werden.
- **3.** Falsche Motorparameter können zum instabilen Betrieb des Motors oder Ausfällen im Normalbetrieb führen. Die richtige Abstimmung der Parameter ist eine wichtige Voraussetzung für die Leistung der Vektorregelung.

Jedes Mal, wenn die Nennleistung des Motors in F801 verändert wird, werden die Parameter des Motors (F806 – F809) automatisch auf die Standardeinstellungen zurückgesetzt. Gehen Sie daher vorsichtig vor, wenn Sie diesen Parameter ändern.

Die Parameter des Motors können sich ändern, wenn der Motor sich nach längerem Betrieb aufheizt. Wenn die Last getrennt werden kann, empfehlen wir eine automatische Überprüfung vor jedem Lauf.

F810 ist die Motornennfrequenz

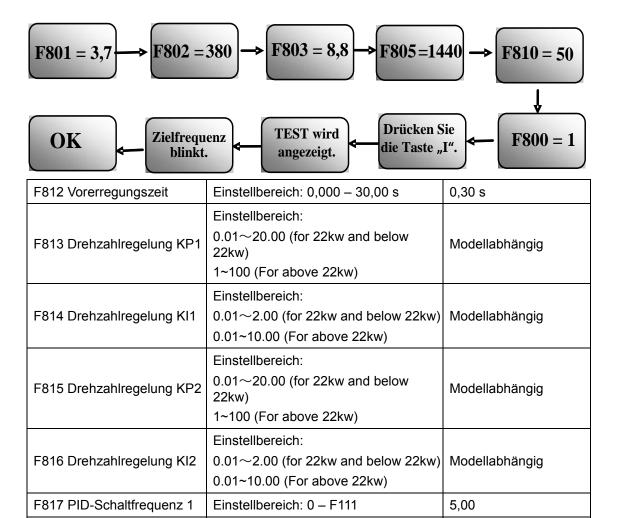
Wenn F104 = 3 und F810 = 60,00 ändert sich F802 automatisch auf 460 V und F805 automatisch auf 1800.

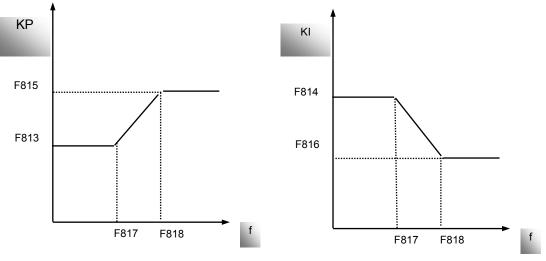
Wenn F104 = 3 und F810 = 50,00 ändert sich F802 automatisch auf 380 V und F805 automatisch auf 1460.

Wenn F810 auf andere Werte gesetzt wird, ändern sich F802 und F805 nicht automatisch.

F802 und F805 können manuell eingestellt werden.

F806 Statorwiderstand	Einstellbereich: $0.001{\sim}65.53\Omega$ (for 22kw and below 22kw) $0.1{\sim}6553m\Omega$ (For above 22kw)	vorbehaltlich der Wechselrichter-Modell
F807 Rotorwiderstand	Einstellbereich: $0.001{\sim}65.53\Omega$ (for 22kw and below 22kw) $0.1{\sim}6553m\Omega$ (For above 22kw)	vorbehaltlich der Wechselrichter-Modell
F808 Streuinduktivität	Einstellbereich: 0.01~655.3mH (for 22kw and below 22kw) 0.001~65.53mH (for above 22kw)	vorbehaltlich der Wechselrichter-Modell
F809 Gegeninduktivität	Einstellbereich: 0.01~655.3mH (for 22kw and below 22kw) 0.001~65.53mH (for above 22kw)	vorbehaltlich der Wechselrichter-Modell


Die Einstellwerte für F806 – F809 werden nach Abschluss der Abstimmung der Parameter des Motors automatisch aktualisiert.


Der Wechselrichter setzt die Parameterwerte von F806 – F809 automatisch auf die Standardparameter des Motors zurück, wenn die Nennleistung F801 des Motors geändert wird.

Es ist nicht möglich, den Motor vor Ort zu messen oder die Daten manuell unter Verwendung der bekannten Parameter eines ähnlichen Motors einzugeben.

50,00

Betrachten wir das Beispiel eines Wechselrichters mit 3,7 kW: Die Daten sind: 3,7 kW, 380 V, 8,8 A, 1440 U/min, 50 Hz, und die Last ist getrennt. Wenn F800 = 1, ist die Vorgehensweise wie folgt:

Einstellbereich: F817 - F111

Abbildung 9-14 PID-Parameter

F818 PID-Schaltfrequenz 2

9-48 Funktionsparameter

Die Dynamik der Drehzahlvektorregelung kann durch Verstärkung der Drehzahlregelung angepasst werden. Durch Erhöhung von KP und KI kann die Dynamik der Drehzahlregelung beschleunigt werden. Wenn jedoch die proportionale oder integrale Verstärkung zu groß ist, kann dies zu Oszillationen führen.

Empfohlene Einstellverfahren:

Nehmen Sie die abschließende Einstellung des Wertes auf Grundlage der Herstellerangaben vor, wenn die Werkseinstellung sich für die Anwendung nicht eignet. Verändern Sie die Einstellung in kleinen Schritten.

Im Fall einer mangelnden Lastkapazität oder langsam ansteigenden Drehzahl erhöhen Sie bitte zuerst den Wert von KP. Stellen Sie dabei sicher, dass keine Oszillationen entstehen. Wenn der Wert stabil ist, erhöhen Sie den Wert von KI entsprechend, um die Reaktion zu beschleunigen.

Wenn es zu Strom- oder Drehzahlschwankungen kommt, reduzieren Sie KP und KI wie erforderlich.

Reduzieren Sie im Zweifelsfall zuerst KP. Wenn dies ohne Wirkung bleibt, erhöhen Sie KP. Passen Sie dann KI an.

Hinweis: Eine fehlerhafte Einstellung von KP und KI kann zu starken Oszillationen oder einem Ausfall des Systems führen. Stellen Sie die Werte sorgfältig ein.

F870 PMSM back electromotive force (mV/rpm)	0.1∼999.9 (valid value between lines)
F871 PMSM D-axis inductance (mH)	0.01~655.35
F872 PMSM Q-axis inductance (mH)	0.01~655.35
F873 PMSM stator resistance (Ω)	0.001~65.000 (phase resistor)

F876 PMSM injection current without load (%)	0.0~100.0	20.0
F877 PMSM injection current compensation without load (%)	0.0~50.0	0.0
F878 PMSM cut-off point of injection current compensation without load (%)	0.0~50.0	10.0

Zum Beispiel:

Wenn F876 = 20 = 10, wenn F877 und F878 = 0, wird der Injektionsstrom ohne Last bei 20% des Nennstromes.

Wenn F876 = 20, = 10, wenn F877 und F878 = 10 und einer Nennfrequenz 50 Hz beträgt, werden Injektionsstrom ohne Last von einem linearen Trend von 30 (F876 + F877) verkleinern. Wenn der Umrichter läuft bis 5 Hz (5 Hz Frequenz = Nenn X F878%), Will Injektionsstrom auf 20 verringern, und ist 5 Hz Grenzeinspritzpunkt Stromkompensation ohne Last.

F880 PMSM PCE detection time (s)	0.0~10.0	0.2
----------------------------------	----------	-----

9.9 Kommunikationsparameter

F900 Kommunikationsadresse	1 – 255: Eindeutige Adresse des Wechselrichters 0: Broadcast-Adresse	1
F901 Kommunikationsmodus	1: ASCII 2: RTU	2
F903 Stop byte	Einstellbereich: 1 – 2	2
F903 Paritätsprüfung	0: Inaktiv 1: Ungerade 2: Gerade	0
F904 Baudrate (bps)	Einstellbereich: 0: 1200 1: 2400 2: 4800 3: 9600 4: 19200 5: 38400 6: 57600	3

Für die Baudrate wird F904 = 9600 empfohlen.

F905 Zeitspanne für Kommunikations-Timeout	Einstellbereich: 0 – 3000	Standardwert: 0
---	---------------------------	-----------------

Wenn F905 auf 0.0 gesetzt ist, dann ist die Funktion inaktiv. Wenn F905 ≠ 0,0 ist und der Wechselrichter während der durch F905 festgelegten Zeit keinen gültigen Befehl vom PC bzw. der SPS erhalten hat, wird eine CE-Abschaltung des Wechselrichters durchgeführt.

Erläuterungen zu Kommunikationsparametern finden Sie in Kapitel 13, Standardanwendungen.

9.10 PID-Parameter

Die Funktion für die interne PID-Einstellung wird für ein einfaches und benutzerfreundliches geschlossenes Regelsystem verwendet.

FA01 Quelle für das Ziel der PID-Einstellung	Einstellbereich: 0: FA04	Standardwert: 0
	1: Al1 2: Al2	

Wenn FA01 = 0, wird die Signalquelle für die PID-Referenz durch FA04 oder MODBUS festgelegt.

Wenn FA01 = 1, wird die Signalquelle für die PID-Referenz durch den externen Analogeingang Al1 festgelegt.

Wenn FA01 = 2, wird die Signalquelle für die PID-Referenz durch den externen Analogeingang Al2 festgelegt.

FA02	Quelle des PID-Rückkopplungssignals	Einstellbereich:	Standardwert: 1
		1: Al1	
		2: AI2	

Wenn FA02 = 1, wird das Rückkopplungssignal für die PID-Referenz durch den externen Analogeingang Al1 festgelegt.

9-50 Funktionsparameter

Wenn FA02 = 2, wird das Rückkopplungssignal für die PID-Referenz durch den externen Analogeingang Al2 festgelegt.

FA03 Max. Grenzwert für PID-Einstellung (%)	FA04 – 100,0	Werkseinstellung: 100,0
FA04 Digitaler Einstellwert für die PID-Einstellung (%)	FA05 – FA03	Werkseinstellung: 50,0
FA05 Min. Grenzwert für PID-Einstellung (%)	0,1 – FA04	Werkseinstellung: 0,0

Wenn FA01 = 0, ist der von FA04 festgelegte Wert der digitale Einstellungsreferenzwert für die PID-Einstellung.

FA06 PID-Polarität	0: Rückkopplung 1: Negative Rückkopplung	Werkseinstellung: 1
--------------------	--	---------------------

Wenn FA06 = 0, gilt: je höher der Rückkopplungswert, desto höher die Motordrehzahl. Dies ist eine positive Rückkopplung.

Wenn FA06 = 1, gilt: je niedriger der Rückkopplungswert, desto höher die Motordrehzahl. Dies ist eine negative Rückkopplung.

FA07 Auswahl der	Einstellbereich:	Standardwert: 1
Ruhezustandsfunktion	0: Aktiv	
	1: Inaktiv	

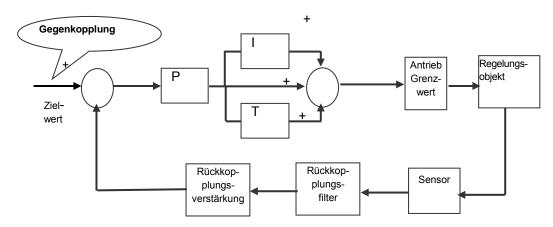
Wenn FA07 = 0, stoppt der Wechselrichter, wenn er für die durch FA10 festgelegte Zeitspanne mit der Mindestfrequenz FA09 läuft.

Wenn FA07 = 1, ist die Ruhezustandsfunktion inaktiv.

FA09	Min. Frequenz für PID-Einstellung	Einstellbereich:	Standardwert: 5,00
(Hz)		F112 – F111	

Die Mindestfrequenz wird durch FA09 festgelegt, wenn die PID-Einstellung aktiv ist.

FA10 Verzögerungszeit für Ruhezustand (s)	Einstellbereich: 0 – 500,0	Standardwert: 15,0
FA11 Verzögerungszeit für Wake-up (s)	Einstellbereich: 0,0 – 3000	Standardwert: 3,0
FA18 Wenn das Ziel der PID-Einstellung geändert wird	0: Inaktiv, 1: Aktiv	Standardwert: 1

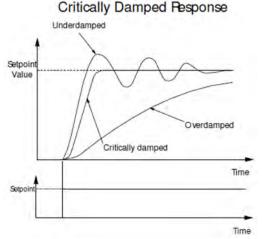

Wenn FA18 = 0, kann das Ziel für die PID-Einstellung nicht geändert werden.

FA19	Proportionale Verstärkung P	Einstellbereich: 0,00 – 10,00	Standardwert: 0,3
FA20	Integrationszeit I (s)	Einstellbereich: 0,1 – 100,0	Standardwert: 0,3
FA21	Zeitdifferenz D (s)	Einstellbereich: 0,0 – 10,0	Standardwert: 0,0
FA22	PID-Abtastzeitraum (s)	Einstellbereich: 0,1 – 10,0	Standardwert: 0,1

Durch die Erhöhung der proportionalen Verstärkung, Reduzierung der Integrationszeit und Erhöhung der Zeitdifferenz kann die Dynamik des geschlossenen PID-Regelsystems erhöht werden. Wenn jedoch P zu hoch, I zu niedrig oder D zu hoch ist, ist das System nicht stabil.

Der Zeitraum für die PID-Einstellung wird durch FA22 festgelegt. Er wirkt sich auf die Geschwindigkeit der PID-Einstellung aus.

Nachfolgend wird die Arithmetik der PID-Einstellung beschrieben.


FA29 PID-Totzeit (%)	0,0 – 10,0	Standardwert: 2,0
----------------------	------------	-------------------

FA29, PID-Totzeit hat zwei Funktionen. Zuerst kann die Einstellung der Totzeit die Oszillation des PID-Stellers begrenzen. Je größer dieser Wert ist, desto geringer sind die Oszillationen des PID-Stellers. Wenn der Wert von FA29 jedoch zu hoch ist, nimmt die Präzision der PID-Einstellung jedoch ab. Beispiel: Wenn FA29 = 2,0 und FA04 = 70, ist die PID-Einstellung bei einem Rückkopplungswert von 68 bis 72 inaktiv.

Sie sollten versuchen, eine kritisch gedämpften Antwort, die die Mechanik, um möglichst genau zu einem Sprung auf den Sollwert zu erreichen verfolgen können.

- In unterkritisch gedämpfte Systeme, die Ausgangs oszilliert und die Einschwingzeit zu.
- kritisch gedämpft Systeme haben keine Über- oder Schwingungen. Sie erreichen den Sollwert innerhalb der gewünschten Reaktionszeit.
- dämpften Systeme nicht schwingt jedoch nicht den Sollwert innerhalb des gewünschten Reaktionszeit nicht erreichen kann.

Hinweis: Für die meisten Anwendungen ist Ableitungsverstärkung nicht verwendet und ist an seinem Standardwert von 0,0 s nach links

Derivative Verstärkung Reaktion in einigen Tänzerin Spannung Kontrollsysteme, insbesondere jenen Systemen mit hohem Trägheitsmoment Tänzer, die eine sofortige Reaktion benötigen, um das Gewicht der Tänzerrolle zu überwinden, zu verbessern. Für Wägezelle kontrollierter Spannung Systemen wird Ableitungsverstärkung fast nie benutzt.

FA58	Eingegebener Branddruckwert (%)	Einstellbereich:	Werkseinstellung:
		0,0 - 100,0	80,0

FA58 wird auch als Zweitdruck bezeichnet. Wenn die Brandsteuerungsklemme aktiv ist, wird der Zieldruckwert auf den Zweitdruckwert umgeschaltet.

9-52 Funktionsparameter

FA59 Notfallbrandmodus	Einstellbereich: 0: Inaktiv 1: Notfallbrandmodus 1 2: Notfallbrandmodus 2	Werkseinstellung: 0
------------------------	---	------------------------

Wenn der Notfallbrandmodus und die Notfallbrandklemme aktiv sind, werden der Betrieb und Schutz des Wechselrichters unterbunden (wenn der OC- oder OE-Schutz ausgelöst werden, wird der Wechselrichter automatisch zurückgesetzt und neu gestartet) und der Wechselrichter beginnt mit der durch FA60 festgelegten Frequenz oder der Zielfrequenz zu laufen, bis er ausfällt.

Notfallbrandmodus 1: Wenn diese Klemme aktiv ist, läuft der Wechselrichter mit der Zielfrequenz.

Notfallbrandmodus 2: Wenn diese Klemme aktiv ist, läuft der Wechselrichter mit der durch FA60 festgelegten Frequenz.

FA60	Lauffrequenz im Notfallbrandmodus	Einstellbereich:	Standardwert: 50,0
		F112 – F111	

Wenn der Notfallbrandmodus 2 und die Brandklemme aktiv sind, läuft der Wechselrichter mit der durch FA60 festgelegten Frequenz.

FA62 Bei inaktiver Brand-Notfallsteuerungsklemme 0: Wechselrichter kann nicht manuell gestoppt werden 1: Wechselrichter kann manuell gestoppt werden
--

[•] FA62 = 0, wenn die Brand-Notfallsteuerungsklemme (DIX=33) inaktiv ist, kann der Wechselrichter vor dem erneuten Einschalten oder Zurücksetzen nicht manuell gestoppt werden.

9.11 Parameter für die Drehmomentregelung

	0: Drehzahlregelung	
FC00 Auswahl der Drehzahl-/Drehmomentregelung	1: Drehzahlregelung	0
	2: Klemmenumschaltung	

- **0:** Drehzahlregelung Der Wechselrichter läuft gemäß der eingestellten Frequenz und das Ausgangsdrehmoment wird automatisch auf das Drehmoment der Last abgestimmt. Das Ausgangsdrehmoment ist durch das maximale Drehmoment begrenzt (Werkseinstellung).
- 1: Drehmomentregelung Der Wechselrichter läuft gemäß dem eingestellten Drehmoment und die Ausgangsdrehzahl wird automatisch auf die Drehzahl der Last abgestimmt. Die Ausgangsdrehzahl ist durch die maximale Drehzahl begrenzt (durch FC23 und FC25 festgelegt). Stellen Sie die Drehmoment- und Drehzahlbegrenzung wie erforderlich ein.
- 2: Klemmenumschaltung. Der Benutzer kann die DIX-Klemme als Drehmoment-/Drehzahl-Umschaltklemme festlegen, um die Umschaltung zwischen Drehmoment und Drehzahl zu realisieren. Wenn diese Klemme aktiviert ist, ist die Drehzahlregelung aktiv. Wenn diese Klemme deaktiviert ist, ist die Drehzahlregelung aktiv.

FC01	Verzögerungszeit der Umschaltung zwischen Drehmoment-/Drehzahlregelung (s)	0,0 – 1,0	0,1
------	--	-----------	-----

Diese Funktion ist mit der Klemmenumschaltung aktiv.

[•] FA62 = 1, wenn die Brand-Notfallsteuerungsklemme (DIX=33) inaktiv ist, kann nach Verlassen des Notfallbrandmodus der Wechselrichter manuell gestoppt werden.

FC02	Drehmoment-Hochlauf-/Auslaufzeit (s)	0,1 – 100,0	1
------	--------------------------------------	-------------	---

Die Zeitspanne für den Hochlauf des Wechselrichters von 0 % auf 100 % des Nenndrehmoments des Motors.

FC06	Quelle für Drehmomentreferenz	0: Digitale Übertragung (FC09)_(Anpassung mit Tastatur) 1: Analogeingang Al1 2: Analogeingang Al2	0
FC07	Koeffizient für Drehmomentreferenz (Analogeingang)	0 – 3,000	3,000
FC09	Befehlswert für Drehmomentreferenz (%)	0 – 300,0	100,0

FC07: Wenn das übertragene Eingangsdrehmoment den maximalen Wert erreicht, ist FC07 das Verhältnis zwischen Ausgangsdrehmoment des Wechselrichters und dem Nenndrehmoment des Motors. Wenn z. B. FC06 = 1, F402 = 10,00, FC07 = 3,00, beträgt, wenn der Kanal Al1 10 V ausgibt, das Ausgangsdrehmoment des Wechselrichters das 3-fache des Nenndrehmoments des Motors.

FC14	Quelle für Offset-Drehmomentreferenz	0: Digitale Übertragung (FC17)_(Anpassung mit Tastatur) 1: Analogeingang Al1 2: Analogeingang Al2	0
FC15	Koeffizient für Offset-Drehmoment	0 – 0,500	0,500
FC16	Grenzfrequenz für Offset-Drehmoment (%)	0 – 100,0	10,0
FC17	Befehlswert für Offset-Drehmoment (%)	0 – 50,0	10,00

Das Offset-Drehmoment wird verwendet, um ein größeres Anfangsdrehmoment auszugeben, das dem Einstellungsdrehmoment und dem Offset-Drehmoment entspricht, wenn der Motor eine Last mit hoher Trägheit antreibt. Wenn die tatsächliche Drehzahl geringer als die durch FC16 festgelegte Frequenz ist, wird das Offset-Drehmoment durch FC14 festgelegt. Wenn die tatsächliche Drehzahl höher als die durch FC16 festgelegte Frequenz ist, ist das Offset-Drehmoment 0.

Wenn FC14 \neq 0 und das Offset-Drehmoment den maximalen Wert erreicht, ist FC15 das Verhältnis zwischen dem Offset-Drehmoment und dem Nenndrehmoment des Motors. Beispiel: Wenn FC14 = 1, F402 = 10,00 und FC15 = 0,500, beträgt, wenn der Kanal Al1 10 V ausgibt, das Offset-Drehmoment 50 % des Nenndrehmoments des Motors.

9-54 Funktionsparameter

FC22	Kanal für Drehzahlbegrenzung vorwärts	0: Digitale Übertragung (FC23) (Anpassung mit Tastatur) 1: Analogeingang Al1 2: Analogeingang Al2	0
FC23	Drehzahlbegrenzung vorwärts (%)	0 – 100,0	10,0
FC24	Kanal für Drehzahlbegrenzung rückwärts	0: Digitale Übertragung (FC25) (Anpassung mit Tastatur) 1: Analogeingang Al1 2: Analogeingang Al2	0
FC25	Drehzahlbegrenzung rückwärts (%)	0 – 100,0	10,00

Drehzahlbegrenzung FC23/FC25: Wenn die übertragene Drehzahl den Maximalwert erreicht, werden diese Parameter verwendet, um den Prozentsatz der Ausgangsfrequenz und max. Frequenz F111 des Wechselrichters festzulegen.

FC28	Kanal für Drehmomentbegrenzung durch Antrieb	0: Digitale Übertragung (FC30) (Anpassung mit Tastatur) 1: Analogeingang Al1 2: Analogeingang Al2	0
FC29	Koeffizient für Drehmomentbegrenzung durch Antrieb	0 – 3,000	3,000
FC30	Drehmomentbegrenzung durch Antrieb (%)	0 – 300,0	200,0
FC31	Kanal für regeneratorische Drehmomentbegrenzung	0: Digitale Übertragung (FC35) (Anpassung mit Tastatur) 1: Analogeingang Al1 2: Analogeingang Al2	0
FC34	Koeffizient für regeneratorische Drehmomentbegrenzung	0 – 3,000	3,000
FC35	Regeneratorische Drehmomentbegrenzung (%)	0 – 300,0	200,00

Wenn der Motor sich im Status "Antrieb" befindet, wird der Kanal für den Ausgangsdrehmoment-Grenzwert durch FC28 und der Drehmomentgrenzwert durch FC29 festgelegt.

Wenn der Motor sich im Status "Regenerierung" befindet, wird der Kanal für die Begrenzung des regeneratorischen Drehmoments durch FC31 und der Drehmomentgrenzwert durch FC34 festgelegt.

10-1 Fehlerbehebung

Kapitel 10 Fehlerbehebung
Wenn der Wechselrichter aufgrund eines Fehlers abschaltet, überprüfen Sie die Ursache und beheben Sie sie nach Bedarf.

> Ergreifen Sie Gegenmaßnahmen entsprechend den Informationen in diesem Handbuch. Wenn sich das Problem auf diese Weise nicht lösen lässt, wenden Sie sich an den Hersteller. Nehmen Sie keine Reparaturen vor, zu denen Sie nicht berechtigt sind.

Tabelle 10-1 Häufige Störungen des Wechselrichters

Fehler	Beschreibung	Ursache	Mögliche Lösung			
OC/ OC2 hinweis	Überstrom	*zu kurze Hochlaufzeit *Kurzschluss am Ausgang	*Hochlaufzeit verlängern *Motorkabel auf Bruchstellen prüfen *Motor auf Überlastung prüfen			
OC1	Überstrom 1	*blockierter Rotor am Motor *fehlerhafte Parameterabstimmung	*VVVF-Ausgleichswert verringern *Parameter korrekt bestimmen			
O.L1	Wechselrichterüberlastung	*Last zu schwer	*Last verringern; * Übersetzungsverhältnis prüfen *Kapazität des Wechselrichters erhöhen			
O.L2	Motor Überlast	*Last zu schwer	*Last verringern; * Übersetzungsverhältnis prüfen *Kapazität des Motors erhöhen			
O.E.	DC-Überspannung	*Versorgungsspannung zu hoch *Lastträgheit zu hoch *Auslaufzeit zu kurz *erneute Zunahme der Motorträgheit *Parameter der Drehzahlregelungs-PID falsch eingestellt	*prüfen, ob Nennspannung anliegt *Bremswiderstand hinzufügen (optional) *Auslaufzeit erhöhen *Parameter der Drehzahlregelungs-PID korrekt einstellen			
P.F1.	Ausfall der Eingangsphase	*Phasenverlust bei Eingangsleistung	*auf normale Leistungsaufnahme prüfen *auf korrekte Parametereinstellung prüfen			
PF0	Ausgang Phasenverlust	*Motor ist defekt *Motorkabel ist lose *Wechselrichter ist defekt	*Motorkabel auf lose Stellen prüfen *Motor auf Defekte prüfen			
L.U.	Unterspannungsschutz	*zu geringe Eingangsspannung	*auf normale Versorgungsspannung prüfen *auf korrekte Parametereinstellung prüfen			
O.H.	Kühlkörper überheizen	*Umgebungstemperatur zu hoch *schlechte Belüftung *Lüfter beschädigt *Trägerwellenfrequenz oder Ausgleichskurve zu hoch	*für ausreichende Belüftung sorgen *Lufteinlass, Luftauslass und Kühler reinigen *vorschriftsgemäß aufstellen *Lüfter austauschen *Trägerwellenfrequenz oder Ausgleichskurve senken			
AErr	Leitung getrennt	*Analogsignalleitung getrennt *Signalquelle defekt	*Signalleitung erneuern *Signalquelle erneuern			
Err1	Falsches Passwort	*bei aktivierter Passwortfunktion: Passwort falsch eingegeben	*Passwort korrekt eingeben			
Err2	Fehlerhafte Parameterabstimmung	*falsche Motorparameter eingegeben	*Motor korrekt anschließen			
Err3	Stromfehler vor Betrieb	*Stromalarmsignal vor Inbetriebnahme vorhanden	*Prüfen, ob Schalttafel korrekt an Netzteil angeschlossen ist *Mit Parker Kontakt aufnehmen			
Err4	Strom-Nullexkursion-	*Flachkabel lose	*Flachkabel prüfen			

Fehler	Beschreibung	Ursache	Mögliche Lösung			
	sstörung	*Stromdetektor defekt	*Mit Parker Kontakt aufnehmen			
Err5	PID-Parameter falsch eingestellt	*PID-Parameter falsch eingestellt	*Parameter korrekt einstellen			
CE	Kommunikations-Timeout	*Kommunikationsfehler	*PC/SPS sendet zur festgelegten Zeit keinen Befehl			
			*Kommunikationsleitung auf zuverlässigen Anschluss prüfen			
FL	Flycatching-Fehler	*Flycatching-Fehler	*Erneut abstimmen			
	Tryodioming Temer	-1 Tycatching-i chici	*Kontakt mit Hersteller aufnehmen			
PCE	PMSM distuning Fehler	Motor-Parameter-Messung, ist falsch. Motor ist zu schwer	Messen Sie die Motorparameter korrekt. Verringern Sie die Last.			
		*Motorkabel ist gebrochen und Kurzschluß nach Masse	*Ändern Motorkabel			
GP	Erdschluss	*Die Isolierung der Motor kaputt und Kurzschluß nach Masse	*Halten Motor *Mögliche Lösung zu OC, OC2 und ERR4			
		*Wechselrichter Fehler	beziehen			

Kein P.F1-Schutz f
ür Ein- und Dreiphaseneingang unter 5,5 kW.

Hinweis: Erst vor 22 kW-Wechselrichter können in OC2 ausgelöst

Blinkende LEDs	Mögliche Lösung
FWD LED Blinking	Wechselrichter Lenkbefehl warten

Tabelle 10-2 Motorstörungen und Gegenmaßnahmen

Störung	Zu prüfende Elemente	Gegenmaßnahmen			
Motor läuft nicht	Verdrahtung korrekt? Einstellung korrekt? Zu große Last? Motor beschädigt? Störungsschutz ausgelöst?	Stromversorgung richtig anschießen Verdrahtung prüfen Störung untersuchen Last reduzieren Gegen Tabelle 10-1			
Motor läuft in falscher Richtung	U-, V-, W-Verdrahtung korrekt? Parametereinstellung korrekt?	Verdrahtung korrigieren Parameter korrekt einstellen			
Motor läuft, aber Drehzahl nicht einstellbar	Verdrahtung für Leitungen mit angegebener Frequenz korrekt? Laufmodus richtig eingestellt? Zu große Last?	Verdrahtung korrigieren Einstellungen korrigieren; Last verringern			
Motordrehzahl zu hoch oder zu niedrig	Motornennwerte korrekt? Übersetzungsverhältnis korrekt? Wechselrichterparameter korrekt eingestellt? Ungewöhnliche Wechselrichter-Ausgangsspannung?	Daten auf Motortypenschild prüfen Übersetzungsverhältniseinstellung prüfen Parametereinstellung prüfen VVVF prüfen Charakteristischer Wert			
Instabiler Motorlauf	Zu große Last? Zu große Laständerung? Phasenverlust? Motorstörung	Last verringern; Laständerung verringern, Kapazität erhöhen Verdrahtung korrigieren			
Auslösung der Stromversorgung	Leitungsstrom zu hoch?	Eingehende Verdrahtung prüfen Passenden Belüftungsschalter auswählen Last reduzieren Wechselrichter auf Störung prüfen			

11-1 Technische Daten

Kapitel 11 Technische Daten

11.1 Auswahl des Bremswiderstands

			Inpu	t current		Output	Input	Brake	Brake	Brake	Brake	Suggested	Efficency
Supply	Part number	kW	230V	380V/ 400V	460V/ 480V	Current (A)	protection current	min ohms	Peak A	Continuous A	Power kW	Resistor	%
1Ph 220V	10G-11-0015-XX	0.2	4			1.5	6						94%
	10G-11-0025-XX	0.37	5.8			2.5	10						94%
	10G-11-0035-XX	0.55	7.6			3.5	14		10				94%
	10G-11-0045-XX	0.75	10			4.5	18.1	60		5	0.2	80	94%
	10G-12-0050-XX	1.1	10.8			5	24.5						94%
	10G-12-0070-XX	1.5	14			7	25.2						94%
	10G-12-0100-XX	2.2	20			10	32						94%
	10G-31-0015-XX	0.2	2.5			1.5	5	00	10	_		_	94%
	10G-31-0025-XX	0.37	3.5			2.5	8.2	60	10	5			94%
	10G-31-0035-XX	0.55	4.5			3.5	10	50		7.5			94%
3Ph 220V	10G-31-0045-XX	0.75	5.4			4.5	11.5	50	15	7.5	0.2	80	94%
	10G-32-0050-XX	1.1	5.8			5	18						94%
	10G-32-0070-XX	1.5	7.8			7	18.2	50	15	7.5			94%
	10G-32-0100-XX	2.2	11			10	21.5						94%
	10G-41-0006-XX	0.2		1.1	0.8	0.6	2.5	120 10					94%
	10G-41-0010-XX	0.37		1.5	1.2	1	5					94%	
	10G-41-0015-XX	0.55		2.1	1.8	1.5	5.5				0.1	145	94%
	10G-42-0020-XX	0.75		3	2.1	2	6.5		10	5			94%
	10G-42-0030-XX	1.1		4	3.2	3	10.2				0.15	120	94%
	10G-42-0040-XX	1.5		5	4.2	4	11						94%
	10G-42-0065-XX	2.2		7.5	7.0	6.5	15						94%
	10G-43-0080-XX	3.7		10.5	8.3	8	18						94%
	10G-43-0090-XX	4		11	9.2	9	21	400			0.4		94%
	10G-43-0120-XX	5.5		14	11.5	12	29	100	15	7.5	0.55		94%
	10G-44-0170-XX	7.5		18.5	16	17	34				0.75		94%
	10G-44-0230-XX	11		24	21	23	46.5	50	25	12.5	1.1	60	97%
3Ph 400V	10G-45-0320-XX	15		36.5	27	32	80	35	40	20	1.5		97%
	10G-45-0380-XX	18.5		44	31	38	90				2	35	97%
	10G-45-0440-XX	22		51	35	44	100	35	50	25	2.2		97%
	10G-46-0600-XX	30		70	53	60	110	25Ω	50	32	3kW	25Ω	97%
	10G-47-0750-XX	37		80	64	75	120	25Ω	50	32	4kW	25Ω	97%
	10G-47-0900-XX	45		94	75	90	150	18Ω	75	45	4.5kW	18Ω	97%
	10G-48-1100-XX	55		120	85	110	180	18Ω	75	45	5.5kW	18Ω	98%
	10G-48-1500-XX	75		160	115	150	240	16Ω	100	50	7.5kW	16Ω	98%
	10G-49-1800-XX	90		190	130	180	285	9Ω	150	88	9kW	9Ω	98%
	10G-49-2200-XX	110		225	170	220	340	9Ω	150	88	11kW	9Ω	98%
	10G-410-2650-XX	132		275	210	265	400	5.5Ω	300	150	13.5kW	5.5Ω	98%
	10G-411-3200-XX	160		330	250	320	500	4Ω	400	200	16kW	4Ω	98%
	10G-411-3600-BF	180	ais: Ba	370	280 ar Träo	360	550	4Ω rmäßic	400	200	18kW	4Ω swiderstand	98%

Hinweis: Bei großer Trägheitslast und übermäßiger Erhitzung des Bremswiderstands ist ein Widerstand mit höheren als den hier empfohlenen Werten zu wählen.

Kapitel 12 Modbus-Kommunikation

12.1 Allgemeines

Modbus ist ein serielles und asynchrones Kommunikationsprotokoll. Das Modbus-Protokoll ist eine allgemeine Sprache für SPS und andere Regelungseinheiten. Das Protokoll enthält eine definierte Informationsstruktur, die unabhängig von dem Netzwerk, über das sie übertragen wird, durch eine Regelungseinheit identifiziert und verwendet werden kann.

Detaillierte Informationen zu MODBUS finden Sie in Referenzhandbüchern oder Informationsmaterialien der Hersteller.

Das Modbus-Protokoll erfordert keine spezielle Schnittstelle. Eine typische physikalische Schnittstelle ist der RS485-Standard.

12.2 Modbus-Protokoll

12.2.1 Übertragungsmodus

Format

ASCII-Modus

Start	Adresse	Funktion	Daten			LRC-Prüfsumm	е	Ende	
: (0X3A)	Adresse des Wechselri- chters	Funktions- code	Daten- länge	Daten 1	 Daten N	Höherwertiges Byte der LRC-Prüfsum- me	Nieder- wertiges Byte der LRC-Prü- fsumme	Rück- lauf (0X0D)	Zeilenv- orschub (0X0A)

RTU-Modus

Start	Adresse	Funktion	Daten	CRC-Prüfsumme		Ende
T1-T2-T3-T4	Adresse des Wechselri- chters	Funktion Code	N-Daten	Niederwertiges Byte der CRC-Prüfsumme	Höherwertiges Byte der CRC-Prüfsumme	T1-T2-T3-T4

12.2.2 ASCII-Modus

Im ASCII-Modus wird ein Byte (im Hexadezimalformat) durch zwei ASCII-Zeichen ausgedrückt.

So enthält zum Beispiel der Hexadezimalwert 31H die zwei ASCII-Zeichen ,3(33H)' und ,1(31H)'.

Die folgende Tabelle enthält eine Aufstellung häufiger Zeichen mit deren ASCII-Code:

Zeichen	0	1	2	3	4	5	6	7
ASCII-Code	30H	31H	32H	33H	34H	35H	36H	37H
Zeichen	8	9	Α	В	,Cʻ	,Dʻ	,E'	,Fʻ
ASCII-Code	38H	39H	41H	42H	43H	44H	45H	46H

12.2.3 RTU-Modus

Im RTU-Modus wird ein Byte im Hexadezimalformat ausgedrückt. So wird beispielsweise wird 31 H an das Datenpaket übermittelt.

12.3 Baudrate

Einstellbereich: 1200, 2400, 4800, 9600, 19200, 38400, 57600

12.4 Frame-Struktur:

ASCII-Modus

Byte	Funktion
1	Startbit (Low-Level)
7	Datenbit
0/1	Paritätsbit (ohne Prüfung 0, ansonsten 1 Bit)
1/2	Stoppbit (mit Prüfung 1 Bit, ansonsten 2 Bits)

RTU-Modus

Byte	Funktion
1	Startbit (Low-Level)
8	Datenbit
0/1	Paritätsbit (ohne Prüfung 0, ansonsten 1 Bit)
1/2	Stoppbit (mit Prüfung 1 Bit, ansonsten 2 Bits)

12,5 Fehlerprüfung

12.5.1 ASCII-Modus

Längsparitätsprüfung (LRC): Wird für den Inhalt des ASCII-Nachrichtenfelds ohne den Doppelpunkt am Beginn der Nachricht und ohne das CRLF-Paar am Ende der Nachricht ausgeführt.

Der LRC-Wert wird durch die Addition der aufeinanderfolgenden 8-Bit-Bytes der Nachricht berechnet, wobei Überträge verworfen werden und dann das Zweierkomplement des Ergebnisses erzeugt wird.

Ein Verfahren zur Erzeugung einer LRC-Prüfsumme ist:

- 1. Alle Bytes in der Nachricht außer dem Doppelpunkt am Anfang und dem CRLF am Ende addieren. In einem 8-Bit-Feld addieren, so dass Überträge verworfen werden.
- 2 Den Wert des letzten Felds vom Hexadezimalwert FF (nur Einsen) subtrahieren, um das Einerkomplement zu erzeugen.
- 3. 1 addieren, um das Zweierkomplement zu erzeugen.

12.5.2 RTU-Modus

Zyklische Redundanzprüfung (CRC): Das CRC-Feld ist zwei Byte lang und enthält einen 16-Bit-Binärwert.

Zu Beginn der zyklischen Redundanzprüfung wird ein 16-Bit-Register mit Einsen gefüllt. Daran werden nacheinander die 8-Bit-Bytes der Nachricht auf den aktuellen Inhalt des Registers angewendet. Nur die acht Datenbits jedes Zeichens werden zur Erzeugung der CRC-Prüfsumme verwendet. Start- und Stoppbits sowie das Paritätsbit gehen nicht in die CRC-Prüfsumme ein.

Ein Verfahren zur Erzeugung einer CRC-16-Prüfsumme ist:

- 1. Ein 16-Bit-Register mit dem Hexadezimalwert FFFF (nur Einsen) füllen. Dies wird als das CRC-Register bezeichnet.
- 2. Das erste 8-Bit-Byte der Nachricht per XOR-Operation mit dem höherwertigen Byte des 16-Bit-CRC-Registers verarbeiten und das Ergebnis in das CRC-Register eintragen.
- 3. Das CRC-Register um ein Bit nach rechts (zum LSB) verschieben und das MSB mit Null auffüllen. Das LSB extrahieren und prüfen.
- 4. (Wenn das LSB 0 war): Schritt 3 wiederholen (eine weitere Verschiebung).

(Wenn das LSB 1 war): Das CRC-Register per XOR-Operation mit dem Polynomwert A001 hex (1010 0000 0000 0001) verarbeiten.

5. Schritt 3 und 4 wiederholen, bis acht Verschiebungen ausgeführt wurden. Wenn dies erledigt wurde, wurde ein vollständiges 8-Bit-Byte verarbeitet.

Wenn die CRC-Prüfsumme an die Nachricht angehängt wird, wird zuerst das niederwertige und dann das höherwertige Byte angehängt.

12.5.3 Protokollumsetzer

Mit der folgenden Anweisung lässt sich ein RTU-Befehl unkompliziert in einen ASCII-Befehl umwandeln:

- 1. LRC- durch CRC-Prüfsumme ersetzen.
- 2. Alle Bytes im RTU-Befehl in ein entsprechendes 2-Byte-ASCII-Zeichen umwandeln. Beispiel: 0x03 in 0x30, 0x33 (ASCII-Code für 0 und ASCII-Code für 3) umwandeln.
- 3. Am Anfang der Nachricht einen Doppelpunkt (:) (ASCII 3A hex) hinzufügen.
- 4. Am Ende ein Wagenrücklauf-Zeilenvorschubpaar (CRLF) hinzufügen (ASCII 0D und 0A hex).

Im Folgenden wird also der RTU-Modus verwendet. Sie können diesen bei Bedarf mit der obenstehenden Anleitung in den ASCII-Modus konvertieren.

12.6 Befehlstyp und Format

Die folgende Liste zeigt die Funktionscodes.

Code	Name	Beschreibung
03	Halteregister lesen	Lesen des Binärinhalts der Halteregister in der Slave-Einheit. (Weniger als 10 Register auf einmal)
06	Einzelregister voreinstellen	Einen Wert in ein Halteregister voreinstellen

12.6.1 Adresse und Bedeutung

In diesem Abschnitt werden der Wechselrichterlauf, der Wechselrichterstatus und die Einstellung damit zusammenhängender Parameter behandelt.

Beschreibung der Regeln der Funktionscodes als Parameteradresse:

i) Funktionscode als Parameteradresse verwenden

Allgemeine Serie:

Höherwertiges Byte 01 – 0A (hexadezimal)

Niederwertiges Byte 00 – 50 (max. Bereich) (hexadezimal) Funktionscode der einzelnen Aufteilungen ist nicht gleich. Informationen zum spezifischen Bereich siehe Handbuch.

Beispiel: Parameteradresse von F114 ist 010E (hexadezimal).

Parameteradresse von F201 ist 0201 (hexadezimal).

Hinweis: In dieser Situation können sechs Funktionscode gelesen, aber nur einer geschrieben werden.

Einige Funktionscodes können nur angezeigt, aber nicht geändert werden. Einige Funktionscodes können weder angezeigt noch geändert werden. Einige Funktionscodes können im Laufstatus nicht geändert werden. Einige Funktionscodes können im Stoppund im Laufstatus nicht geändert werden.

Wenn Parameter aller Funktionscodes geändert werden, beachten Sie zum effektiven Bereich, zur Einheit und zu entsprechenden Anweisungen das Benutzerhandbuch der entsprechenden Wechselrichterserie. Andernfalls können unerwartete Ergebnisse auftreten.

ii) Verschiedene Parameter als Parameteradresse verwenden

12-4 Modbus-Kommunikation

(Die obigen Adressen- und Parameterbeschreibungen sind im Hexadezimalformat, so wird z. B. die Dezimalzahl 4096 durch Hexadezimal 1000 dargestellt.)

12.6.2 Laufstatusparameter

Parameteradresse	Parameterbeschreibung (nur lesen)
1000	Ausgangsfrequenz
1001	Ausgangsspannung
1002	Ausgangsstrom
1003	Anzahl der Pole/Regelungsmodus, höherwertiges Byte ist Anzahl der Pole, niederwertiges Byte ist Regelungsmodus.
1004	Bus-Spannung
1005	Übersetzungsverhältnis/Wechselrichterstatus
AC10	höherwertiges Byte ist Übersetzungsverhältnis, niederwertiges Byte ist Wechselrichterstatus
	Wechselrichterstatus:
	0X00: Standby-Modus
	0X01: Vorwärtslauf
	0X02: Rückwärtslauf
	0X04: Überstrom (OC)
	0X05: DC Überstrom (OE)
	0X06: Ausfall der Eingangsphase (PF1)
	0X07: Frequenzüberlast (OL1)
	0X08: Unterspannung (LU)
	0X09: Überhitzung (OH)
	0X0A: Motorüberlast (OL2)
	0X0B: Störung (Err)
	0X0C: LL
	0X0D: Externe Störung (ESP)
	0X0E: Err1
	0X0F: Err2
	0X10: Err3
	0X11: Err4
	0X12: OC1
	0X13:PF0
	0X14: Schutz vor Trennung des Analogsignals (AErr)
	0X19: PID-Parameter falsch festgelegt (Err5)
	0X2D: Kommunikations-Timeout (CE)
	0X2E: Flycatching-Fehler (FL)
	0X31: Watchdog-Fehler (Err6)
1006	Prozentsatz des Abtriebsdrehmoments
1007	Kühlertemperatur des Wechselrichters
1008	Eingegebener PID-Wert
1009	PID-Feedbackwert

12-6 Modbus-Kommunikation

Parameteradresse lesen	Funktion	Erläuterung
100 A	Ganzzahligen Leistungswert lesen	Der ganzzahlige Leistungswert wird vom PC gelesen.
100B	DI-Klemmenstatus	DI1 – DI8 – BIT0 – BIT7
100C	Klemmenausgangsstatus	bit0-OUT1 Bit2-Fehlerrelais
100D	Al1	0 – 4095 Digitalwert des Analogeingangs lesen
100E	AI2	0 – 4095 Digitalwert des Analogeingangs lesen
1010	Reserviert	
1011	Reserviert	
1012	Reserviert	
1013	Drehzahl der aktuellen Stufe	Überwachung der Drehzahlstufe des Wechselrichters
	(Valid when F500 = 1 or	0000 No function Keine
	F500 = 2)	0001 Drehzahlstufe 1
		0010 Drehzahlstufe 2
		0011 Drehzahlstufe 3
		0100 Drehzahlstufe 4
		0101 Drehzahlstufe 5
		0110 Drehzahlstufe 6
		0111 Drehzahlstufe 7
		1000 Drehzahlstufe 8
		1001 Drehzahlstufe 9
		1010 Drehzahlstufe 10
		1011 Drehzahlstufe 11
		1100 Drehzahlstufe 12
		1101 Drehzahlstufe 13
		1110 Drehzahlstufe 14
		1111 Drehzahlstufe 15
1014	Reserviert	
1015	AO1 (0 – 100,00)	Überwachung des Prozentsatzes des Analogausgangs
1016	AO2 (0-100.00)	Überwachung des Prozentsatzes des Analogausgangs
1017	Aktuelle Drehzahl	Überwachung der aktuellen Drehzahl
1018	Genauen Leistungswert lesen	Leistung auf 1 Dezimalstelle genau ermitteln.

12.6.3 Steuerbefehle

Parameteradresse	Parameterbeschreibung (nur schreiben)
2000	Bedeutung des Befehls:
	0001: Vorwärtslauf (keine Parameter)
	0002: Rückwärtslauf (keine Parameter)
	0003: Auslaufstopp 0004: Freistopp
	0005: Start Schrittbetrieb vorwärts
	0006: Stopp Schrittbetrieb vorwärts
	0007: Reserviert 0008: Lauf (ohne Richtung)
	0009: Fehlerrückstellung
	000A: Stopp Schrittbetrieb vorwärts
	000B: Stopp Schrittbetrieb rückwärts
2001	Sperrparameter
	0001: Gesperrtes System freigeben (Fernbedienung gesperrt)
	0002: Fernbedienung sperren (Fernbedienungsbefehle vor Entsperrung
	nicht gültig)
	0003: RAM und EEPROM dürfen geschrieben werden.
	0004: Nur RAM darf geschrieben werden, EEPROM ist schreibgeschützt.

Funktion	Erläuterung
Ausgangsprozentsatz von AO1 wird durch PC/SPS eingestellt. Einstellbereich: 0 – 1000	F431 = 7 AO1-Tokenausgang analog ist geregelt durch PC/SPS.
Ausgangsprozentsatz von AO2 wird durch PC/SPS eingestellt. Einstellbereich: 0 – 1000	F432 = 7 AO2-Tokenausgang analog ist geregelt durch PC/SPS.
Reserviert	
Mehrfunktionsausgangsklemme DO1	1 bedeutet, das Tokenausgang
Mehrfunktionsausgangsklemme DO2 Relais Ausgang	aktiv ist. 0 bedeutet, dass Tokenausgang inaktiv ist.
	Ausgangsprozentsatz von AO1 wird durch PC/SPS eingestellt. Einstellbereich: 0 – 1000 Ausgangsprozentsatz von AO2 wird durch PC/SPS eingestellt. Einstellbereich: 0 – 1000 Reserviert Mehrfunktionsausgangsklemme DO1 Mehrfunktionsausgangsklemme DO2

12.6.4 Unzulässige Reaktion beim Lesen der Parameter

Befehlsbeschreibung	Funktion	Daten
Slave-Parameterantwort	Höherwertiges Byte nimmt Wert 1 an.	Bedeutung des Befehls: 0001: Ungültiger Funktionscode 0002: Ungültige Adresse 0003: Ungültige Daten 0004: Slave-Fehler Hinweis 2

Hinweis 2: Ungültige Antwort 0004 erscheint in zwei Fällen:

Wechselrichter nicht zurücksetzen, wenn Wechselrichter im Fehlerstatus ist.

Wechselrichter nicht entsperren, wenn Wechselrichter im gesperrten Status ist.

Weitere Erläuterungen

Ausdrücke im Kommunikationsprozess:

Parameterwerte der Frequenz = Istwert X 100

Parameterwerte der Zeit = Istwert X 10

Parameterwerte der Strom = Istwert X 100

Parameterwerte der Spannung = Istwert X 1

Parameterwerte der Leistung (100 A) = Istwert X 1

Parameterwerte der Leistung (1018) = Istwert X 10

Parameterwerte des Übersetzungsverhältnis = Istwert X 100

Parameterwerte der Versions-Nr. Istwert X 100

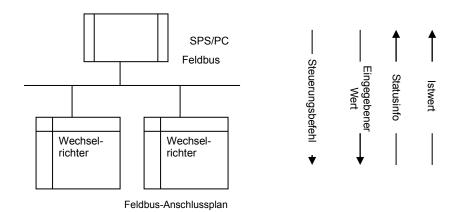
12-8 Modbus-Kommunikation

Vorgehensweise: Parameterwert ist der im Datenpaket gesendete Wert. Istwert ist der Istwert des Wechselrichters. Nachdem PC/SPS den Parameterwert empfängt, teilt es den entsprechenden Koeffizienten um den tatsächlichen Wert zu erhalten.

HINWEIS: Der Wurzelpunkt der Daten im Datenpaket wird nicht berücksichtigt, wenn PC/SPS den Befehl an den Wechselrichter überträgt. Der gültige Wertebereich liegt zwischen 0 und 65535.

12.7 Funktionscodes im Zusammenhang mit Kommunikationsfunktionen

Funktionscode	Funktionsdefinition	Einstellungsbereich	Standar- dwert
F200	Quelle des Startbefehls	0: Tastaturbefehl; 1: Klemmenbefehl; 2: Tastenfeld + Klemme; 3: MODBUS; 4: Tastenfeld + Klemme + MODBUS	4
F201	Quelle des Stoppbefehls	0: Tastaturbefehl; 1: Klemmenbefehl; 2: Tastenfeld + Klemme; 3: MODBUS; 4: Tastenfeld + Klemme + MODBUS	4
F203	Hauptfrequenzquelle X	0: Digitaleinstellungsspeicher; 1: Extern analog AI1; 2: Extern analog AI2; 3: Reserviert 4: Drehzahlstufenkontrolle; 5: Kein Speicher durch digitale Einstellung; 6: Reserviert 7: Reserviert; 8: Reserviert; 9: PID-Einstellung; 10: MODBUS	0
F900	Adresse des Wechselrichters	1 – 255	1
F901	Auswahl Modbus-Modus	1: ASCII-Modus 2: RTU-Modus	1
F903	Paritätsprüfung	0: Inaktiv 1: Ungerade 2: Gerade	0
F904	Baudrate (bps)	0: 1200 1: 2400 2: 4800 3: 9.600 4: 19200 5: 38400 6: 57600	3

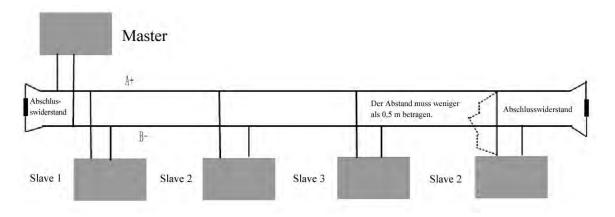

Wenn der Wechselrichter mit SPS/PC kommuniziert, stellen Sie die Kommunikationsfunktionscodes entsprechend den SPS-/PC-Kommunikationsparametern ein.

12.8 Physikalische Schnittstelle

12.8.1 Position der Schnittstelle

Die Kommunikationsschnittstelle RS485 befindet sich links von den Steuerklemmen und ist auf der Unterseite mit A+ und B- gekennzeichnet.

12.8.2 Struktur des Feldbus


Im Wechselrichter AC10 wird der Halbduplex-Kommunikationsmodus der Schnittstelle RS485 verwendet. Die RS485-Bus-Leitung verwendet eine Daisy-Chain-Struktur. Verwenden Sie keine Stichleitungen oder Sternkonfiguration. Die von Stichleitungen oder Sternkonfiguration reflektierten Signale stören die Kommunikation der Schnittstelle RS485.

Beachten Sie, dass bei Halbduplexverbindungen nur ein Wechselrichter zur gleichen Zeit mit einem PC bzw. einer SPS kommunizieren kann. Wenn mehrere Wechselrichter gleichzeitig Daten übertragen, kommt es zu konkurrierenden Bus-Zugriffen, die nicht nur zu Kommunikationsfehlern, sondern auch zu höheren Strömen an bestimmten Komponenten führen.

12.9 Erdung und Anschluss

um die Reflexion von Signalen zu vermindern, wird für den Anschluss des RS485-Netzwerks ein Anschlusswiderstand von 120 $\,\Omega\,$ verwendet. Der Anschlusswiderstand darf nicht für Zwischennetzwerke verwendet werden.

Das RS485-Netzwerk darf an keinem Punkt direkt geerdet sein. Alle Geräte im Netzwerk müssen ordnungsgemäß über ihre eigene Masseklemme geerdet sein. Erdungskabel dürfen in keinem Fall eine geschlossene Schleife bilden.

Anschlusswiderstand-Anschlussplan

12-10 Modbus-Kommunikation

Prüfen Sie bei der Verdrahtung die Übertragungsleistung des PCs bzw. der SPS und die Entfernung zwischen PC/SPS und Wechselrichter. Wenn die Leistung nicht ausreicht, fügen Sie einen Repeater hinzu.

Die Kabelverbindungen für die Installation dürfen nur hergestellt werden, wenn der Wechselrichter von der Stromversorgung getrennt ist.

12.9.1 Beispiele

Beispiel 1: Im RTU-Modus die Hochlaufzeit (F114) des Wechselrichters Nr. 01 auf 10,0 s einstellen.

Abfrage

Adresse	Funktion	Registera- dresse Hi	Registera- dresse Lo	Preset- Daten Hi	Preset- Daten Lo	CRC Lo	CRC Hi
01	06	01	0E	00	64	E8	1E

Funktionscode F114 Wert: 10,0 s

normale Reaktion

Adresse	Funktion	Registera- dresse Hi	Registera- dresse Lo	Antwort- daten Hi	Antwort- daten Lo	CRC Lo	CRC Hi
01	06	01	0E	00	64	E8	1E

Funktionscode F114 normale Reaktion

anormale Reaktion

Adresse	Funktion	Anormaler Code	CRC Lo	CRC Hi
01	86	04	43	A3

Der Maximalwert des Funktionscodes ist 1. Slave-Fehler

Beispiel 2: Ausgangsfrequenz, Ausgangsspannung, Ausgangsstrom und aktuelle Drehzahl von Wechselrichter Nr. 2 lesen.

Host-Abfrage

Adresse	Funktion	Erste Registera- dresse Hi	Erste Registera- dresse Lo	Registe- rzähler Hi	Registe- rzähler Lo	CRC Lo	CRC Hi
02	03	aus	00	00	04	40	FA

Kommunikationsparameteradresse 1000H

Slave-Antwort:

Adresse	Funktion	Bytezähler	Daten Hi	Daten Lo	Daten Hi	Daten Lo	Daten Hi	Daten Lo	Daten Hi	Daten Lo	CRC Lo	CRC Hi
02	03	08	13	88	01	90	00	3C	02	00	82	F6

Ausgangsfrequenz Ausgangsspannung Ausgangsstrom Anzahl der Polpaare Steuermodus

Ausgangsfrequenz des Wechselrichters Nr. 2 beträgt 50,00 Hz, die Ausgangsspannung 380 V, der Ausgangsstrom 0,6 A, die Anzahl der Polpaare 2 und der Steuermodus ist Tastenfeldsteuerung.

Beispiel 3: Wechselrichter Nr. 1 läuft vorwärts.

Host-Abfrage:

Adresse	Funktion	Register Hi	Register Lo	Schreib status Hi	Schrei- bstatus Lo	CRC Lo	CRC Hi
01	06	20	00	00	01	43	CA

Kommunikationsparameter Adresse 2000H

Vorwärtslauf

Normale Slave-Antwort:

Adresse	Funktion	Register Hi	Register Lo	Schrei- bstatus Hi	Schrei- bstatus Lo	CRC Lo	CRC Hi
01	06	20	00	00	01	43	CA

normale Reaktion

Anormale Slave-Antwort:

Adresse	Funktion	Anormaler Code	CRC Lo	CRC Hi
01	86	01	83	A0

Der Maximalwert des Funktionscodes ist 1. Ungültiger Funktionscode (Annahme)

Eg4: Wert von F113 und F114 aus Wechselrichter Nr. 2 auslesen.

Host-Abfrage:

Adresse	Funktion	Registera- dresse Hi	Registera- dresse Lo	Registe- rzähler Hi	Registe- rzähler Lo	CRC Lo	CRC Hi
02	03	01	0D	00	02	54	07

Kommunikationsparameteradresse F10DH

Anzahl der Leseregister

Normale Slave-Antwort:

Adresse	Funktion	Bytezan- ler	Parameter-	Erster Parameter- status Lo	Parameter-	Zweiter Parameter- status Lo	CRC Lo	CRC Hi
02	03	04	03	E8	00	78	49	61

Der Istwert beträgt 10,00.

Der Istwert beträgt 12,00.

Anormale Slave-Antwort:

Adresse	Funktionscode	Anormaler Code	CRC Lo	CRC Hi
02	83	08	В0	F6

Der Maximalwert des Funktionscodes ist 1.

Paritätsprüfungsfehler

Kapitel 13 Standardanwendungen

Der Antrieb wird mit 5 Anwendungen geliefert, Anwendung 0 bis Anwendung 5. Diese haben folgende Funktionen:

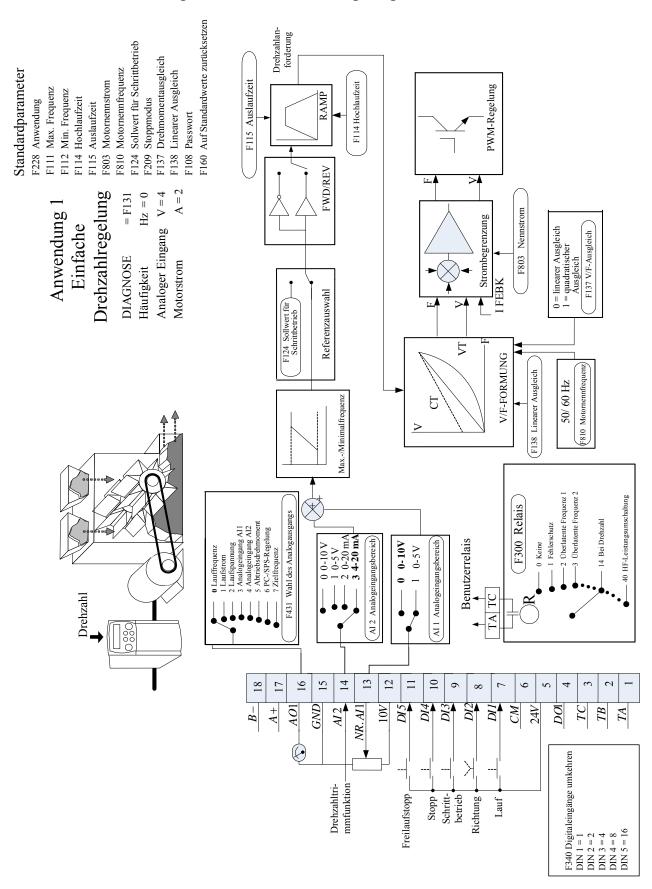
Anwendung 1 ist die werkseitige Standardanwendung für einfache Drehzahlregelung.

Anwendung 2 ermöglicht die Drehzahlregelung mit manuellem oder automatischem Sollwert.

Anwendung 3 ermöglicht die Drehzahlregelung mit Drehzahlvoreinstellungen.

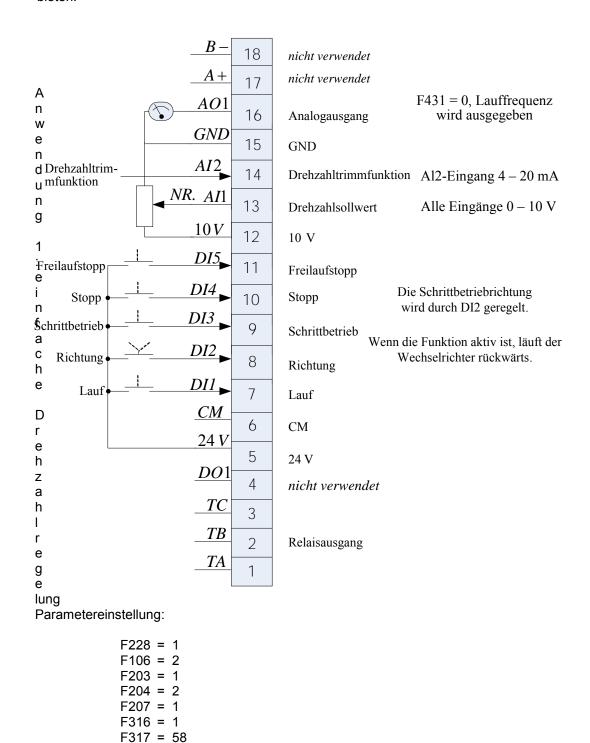
Anwendung 4 ermöglicht die Drehzahlregelung mit Klemmen.

Anwendung 5 ermöglicht die Drehzahlregelung mit PID.

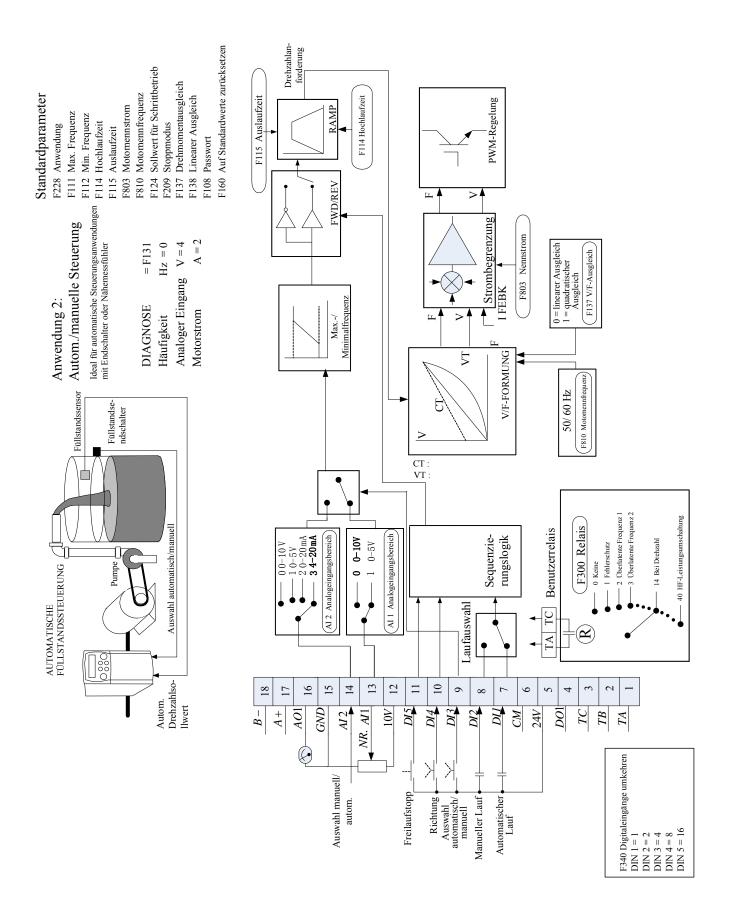

Steuerungsverkabelung der Anwendung

	Normal offener mechanischer Taster
<u>¥</u>	Wahlschalter mit 2 Positionen
	Stromlos geöffneter Kontakt (Relais)

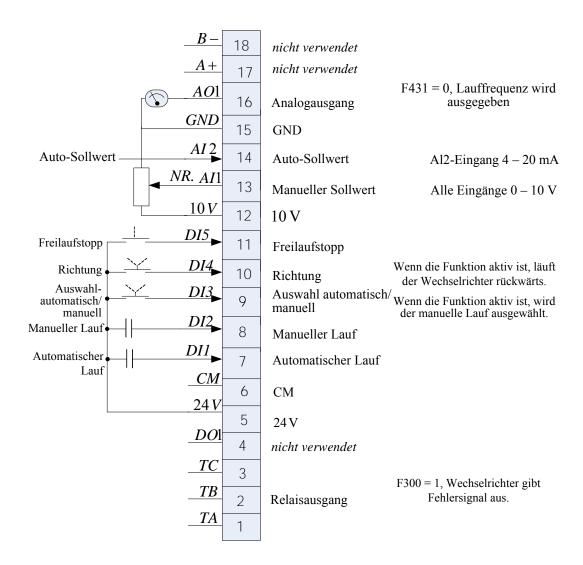
Die Standardanwendung ist 0. Dies bietet Zugriff auf alle Betriebslisten in diesem Handbuch. Um eines der Standard-Regelungsanwendungsmakros zu wählen, setzen Sie Parameter F228 auf 1.


13-2 Standardanwendungen

13.1 Anwendung 1: Einfache Drehzahlregelung

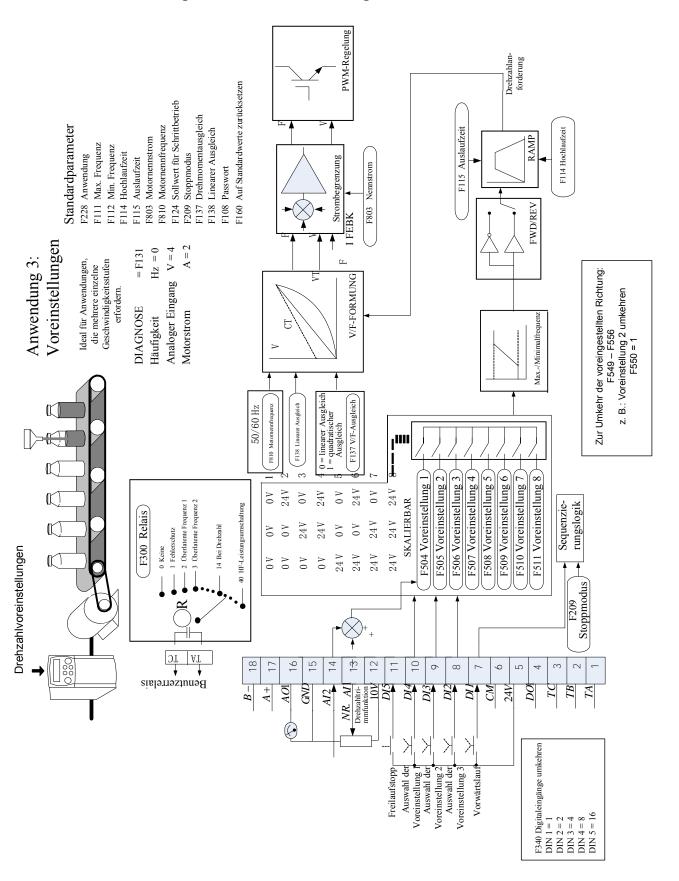

Standardanwendungen 13-3

Diese Anwendung ist ideal für Universalanwendungen. Der Sollwert ist die Summe der beiden Analogeingänge Al1 und Al2, die einen Drehzahlsollwert und eine Sekundärdrehzahlfunktion bieten.


F318 = 52 F319 = 2 F320 = 8 F431 = 0

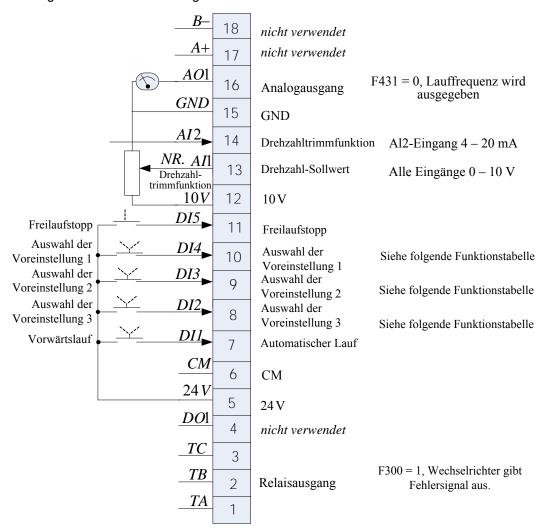
13.2 Anwendung 2: Automatische/manuelle Regelung

Standardanwendungen 13-5


Zwei Laufeingänge und zwei Sollwerteingänge stehen zur Verfügung. Mit dem Wahlschalter Auto/Manuell wählen Sie, welches Eingangspaar aktiv ist. Die Anwendung wird manchmal als Lokal/Dezentral bezeichnet.

Anwendung 2: Automatische/manuelle Regelung Parametereinstellung:

F228 = 2 F106 = 2 F203 = 1 F204 = 2 F207 = 2 F316 = 56 F317 = 57 F318 = 55 F319 = 58 F320 = 8 F431 = 0


13.3 Anwendung 3: Drehzahlvoreinstellungen

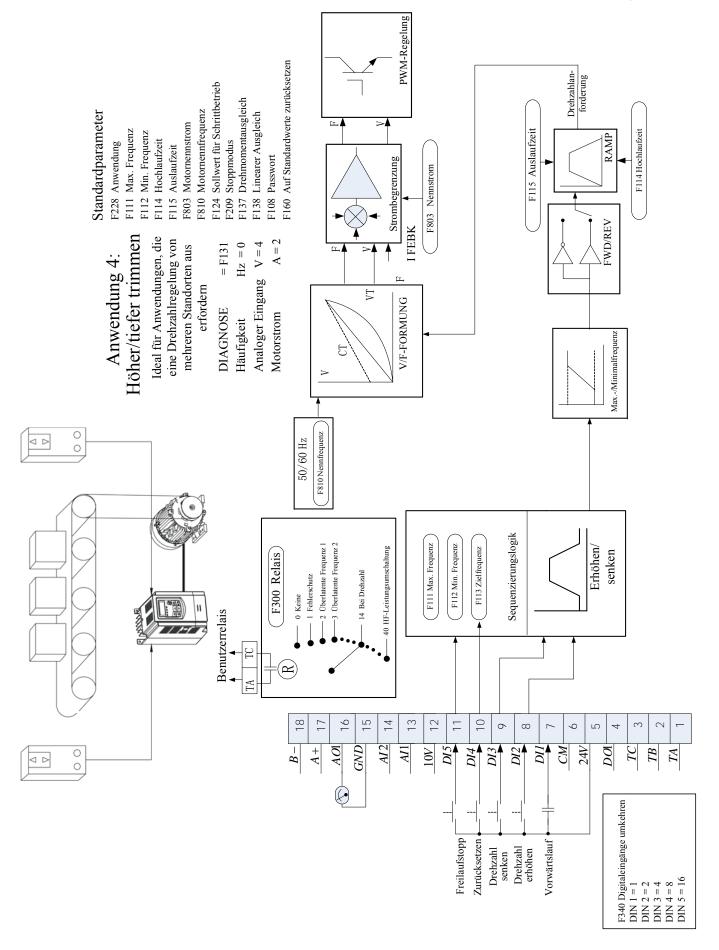
Standardanwendungen 13-7

Diese ist ideal für Anwendungen, die mehrere einzelne Geschwindigkeitsstufen erfordern.

Der Sollwert wird entweder aus der Summe der analogen Eingänge oder als eine der bis zu acht anderen vordefinierten Geschwindigkeitsstufen ausgewählt. Diese werden mit DI2, DI3 und DI4 gewählt. Siehe hierzu folgende Funktionstabelle.

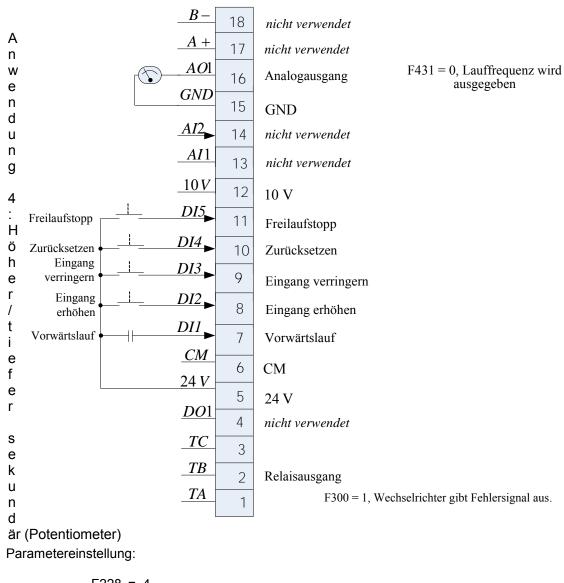
Vorwahldrehzahl-Funktionstabelle

DI4	DI3	DI2	Vorwahl
0 V	0 V	0 V	1
0 V	0 V	24 V	2
0 V	24 V	0 V	3
0 V	24 V	24 V	4
24 V	0 V	0 V	5
24 V	0 V	24 V	6
24 V	24 V	0 V	7
24 V	24 V	24 V	8

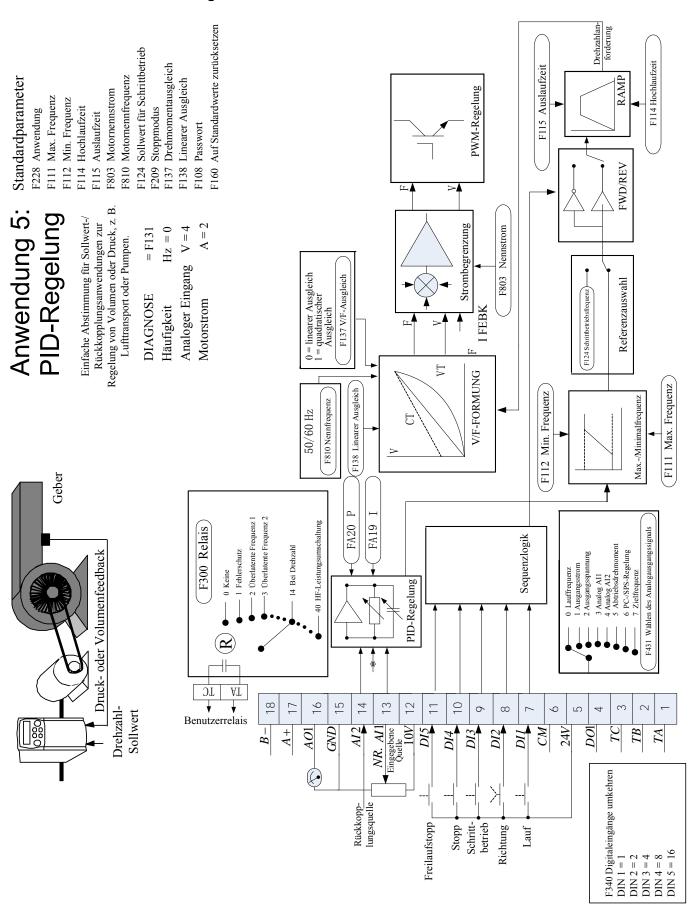

Anwendung 3: Drehzahlvoreinstellungen Parametereinstellung:

F223	=	3
F106	=	2
F203	=	4
F204	=	1
F207	=	1
F316	=	56
F317		_
F318		•
F319		-
F320		_
F431	=	0

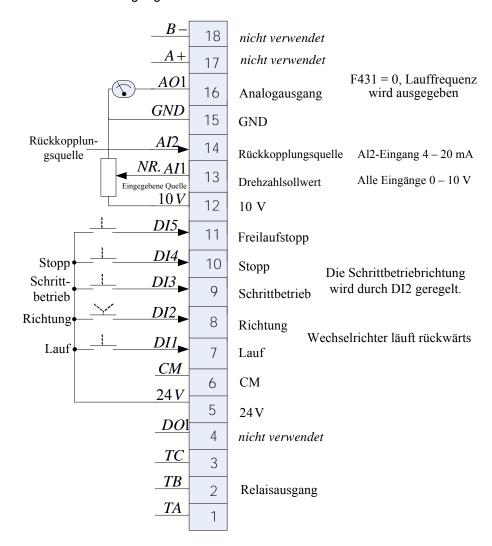
13-8 Standardanwendungen


13.4 Anwendung 4: Höher/tiefer sekundär (Potentiometer)

Standardanwendungen 13-9


13-10 Standardanwendungen

Diese Anwendung imitiert die Funktion eines motorisierten Potentiometers. Digitale Eingänge ermöglichen das Erhöhen und Absenken eines Sollwerts zwischen Grenzwerten. Die Anwendung wird manchmal als motorisiertes Potentiometer bezeichnet.


F228 = 4 F106 = 2 F112 = 0,00 F113 = 0,00 F224 = 1 F203 = 0 F208 = 1 F316 = 15 F317 = 13 F318 = 14 F319 = 54

13.5 Anwendung 5: PID

13-12 Standardanwendungen

Eine einfache Anwendung unter Verwendung eines Proportional-Integral-Differential-Reglers mit drei Bedingungen. Der Sollwert wird Al1 und das Rückkopplungssignal dem Prozess von Al2 entnommen. Die Differenz zwischen diesen beiden Signalen wird als PID-Fehler übernommen. Der Ausgang des PID-Blocks wird dann als Sollwert des Antriebs verwendet.

Anwendung 5: PID Parametereinstellung:

F228 = 5 F106 = 2 F203 = 9 F316 = 1 F317 = 58 F318 = 52 F319 = 2 F320 = 8 F431 = 0 FA01 = 1 FA02 = 2

Kapitel 14 Konformität

Dieses Kapitel beschreibt die Compliance-Anforderungen und Produktzertifizierungen.

14.1 Geltende Normen

EN 61800-3:2004 Drehzahlveränderbare elektrische Antriebe – Teil 3: EMV-Anforderungen einschließlich spezieller Prüfverfahren.

EN 61800-5-1:2007 Drehzahlveränderbare elektrische Antriebe – Teil 5-1: Anforderungen an die Sicherheit – Elektrische, thermische und energetische Anforderungen.

EN 60204-1:2006 Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen – Teil 1: Allgemeine Anforderungen.

EN 61000-3-2:2006 Elektromagnetische Verträglichkeit (EMV) – Teil 3-2: Grenzwerte – Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom <= 16 A je Leiter).

IEC 61000-3-12:2011 Elektromagnetische Verträglichkeit (EMV) – Teil 3-12: Grenzwerte für Oberschwingungsströme, verursacht von Geräten und Einrichtungen mit einem Eingangsstrom > 16 A und <= 75 A je Leiter, die zum Anschluss an öffentliche Niederspannungsnetze vorgesehen sind.

EN 61000-6-2:2007 Elektromagnetische Verträglichkeit (EMV) – Teil 6-2: Fachgrundnormen – Störfestigkeit für Industriebereiche.

EN 61000-6-3:2007 Elektromagnetische Verträglichkeit (EMV) – Teil 6-3: Fachgrundnormen – Störaussendung für Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe.

EN 61000-6-4:2007 Elektromagnetische Verträglichkeit (EMV) – Teil 6-4: Fachgrundnormen – Störaussendung für Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe.

UL508C Richtlinie zur Sicherheit von Stromrichtern, dritte Ausgabe.

CSA 22.2 No.14-10 Industrielle Steuerungen

NFPA National Electrical Code, National Fire Protection Agency, Part 70

REGISTRIERUNG, BEWERTUNG, ZULASSUNG UND BESCHRÄNKUNG CHEMISCHER STOFFE (REACH)

Die Verordnung (EG) Nr. 1907/2006 des Europäischen Parlaments und des Rates vom 18. Dezember 2006 über die Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH) ist am 1. Juni 2007 in Kraft getreten. Parker unterstützt das Ziel von REACH, das darin besteht, einen möglichst hohen Schutz der menschlichen Gesundheit und der Umwelt sicherzustellen. Parker erfüllt alle einschlägigen Anforderungen von REACH.

Mit Wirkung ab dem 19. Dezember 2011 enthalten von Parker hergestellte oder vermarktete VSD-Produkte keine Substanzen aus der REACH SVHC-Kandidatenliste mit einem Gewichtsanteil von mehr als 0,1 %. Parker verfolgt kontinuierlich die neusten Entwicklungen der REACH-Verordnung und informiert seine Kunden gemäß der o.g. Anforderung.

14.2 EUROPÄISCHE NORMEN

CE-Kennzeichnung

Parker Hannifin Manufacturing Ltd versieht das Produkt mit der CE-Kennzeichnung, um den freien Warenverkehr im europäischen Wirtschaftsraum zu erleichtern. Die CE-Kennzeichnung weist auf die Einhaltung aller einschlägigen Richtlinien hin. Harmonisierte Normen dienen zum Nachweis, dass die grundlegenden Anforderungen dieser relevanten Normen eingehalten werden.

Es muss darauf hingewiesen werden, dass eine Kombination normenkonformer Produkte nicht zwangsläufig in einem normenkonformen System resultiert. Das heißt, die Einhaltung der harmonisierten Normen muss für das das System als Ganzes nachgewiesen werden, um die Einhaltung der Richtlinie sicherzustellen.

Örtliche Verdrahtungsvorschriften haben stets Vorrang.

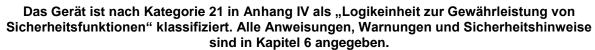
Wenn EMV- und Sicherheitsanforderungen, z. B. in Bezug auf Erdung, nicht vereinbar sind, erhält stets die Sicherheit des Personals Priorität.

14.2.1 Niederspannungsrichtlinie

Bei Installation gemäß diesem Handbuch erfüllt das Produkt die Niederspannungsrichtlinie 2006/95/EG.

Schutzleiteranschlüsse (PE)

Das Produkt erfordert einen Schutzleiter mit einem Leiterguerschnitt von mindestens 10 mm². Falls dies nicht möglich ist, sollte eine zweite am Antrieb vorhandene Schutzleiterklemme verwendet werden. Der zweite Schutzleiter muss unabhängig, aber elektrisch parallel geschaltet sein.


14.2.2 EMV-Richtlinie

Bei Installation gemäß diesem Handbuch erfüllt das Produkt die Richtlinie zur elektromagnetischen Verträglichkeit (EMV) 2004/108/EG.

Die folgenden Informationen sollen dazu dienen, die elektromagnetische Verträglichkeit (EMV) von Antrieben und Systemen in ihrer vorgesehenen Einsatzumgebung zu maximieren, indem die Störstrahlung minimiert und die Störfestigkeit optimiert wird.

14.2.3 Maschinenrichtlinie

Bei Installation gemäß diesem Handbuch erfüllt das Produkt die Maschinenrichtlinie 2006/42/EG.

Dieses Produkt ist eine Komponente und daher nicht für unabhängigen Betrieb, sondern für den Einbau in eine Maschine vorgesehen. Die komplette Maschine oder Anlage, in der dieses Gerät zum Einsatz kommt, darf nur in Betrieb genommen werden, wenn alle Sicherheitsaspekte der Richtlinie vollständig umgesetzt sind. Besonders zu beachten ist EN 60204-1 (Sicherheit von Maschinen - Elektrische Ausrüstungen von Maschinen).

14.2.4 EMV-Konformität

WARNUNG

In Wohnbereichen kann dieses Produkt auch Funkstörungen verursachen. In diesem Fall sind ggf. zusätzliche Maßnahmen zur Funkentstörung erforderlich.

Definitionen

Kategorie C1

Elektrisches Antriebssystem mit weniger als 1000 V Nennspannung für den Einsatz in der ersten Umgebung.

Kategorie C2

Elektrisches Antriebssystem mit weniger als 1000 V Nennspannung, bei dem es sich weder um ein steckfertiges noch um ein mobiles Gerät handelt, und das nur durch Fachpersonal installiert und in Betrieb genommen werden darf.

Hinweis: Fachpersonal bezieht sich auf eine Person oder Organisation mit den erforderlichen Fachkenntnissen zur Installation und/oder Inbetriebnahme von elektrischen Antriebssystemen unter Berücksichtigung der EMV.

Kategorie C3

Elektrisches Antriebssystem mit weniger als 1000 V Nennspannung für den Einsatz in der zweiten Umgebung – nicht in der ersten!

Kategorie C4

Elektrisches Antriebssystem mit weniger als 1000 V Nennspannung oder Nennströmen >= 400 A, oder für den Einsatz in einem komplexen Systemen in der zweiten Umgebung.

Erste Umgebung

Umgebung, die Wohngebäude beinhaltet sowie Einrichtungen, die direkt ohne Zwischentransformatoren an ein Niederspannungsnetz angeschlossen sind.

Hinweis: Beispiele für Standorte der ersten Umgebung sind Wohnhäuser, Appartements, Geschäftsgebäude oder Büros in Wohngebäuden.

Zweite Umgebung

Umgebung, die alle anderen Bereiche als diejenigen Wohn- und Geschäftsgebiete beinhaltet, die direkt an ein Niederspannungsnetz angeschlossen sind.

Hinweis: Beispiele für Standorte der zweiten Umgebung sind Industriebereiche und technische Bereiche von Gebäuden, die über einen speziellen Transformator versorgt werden.

14.3 EMV-Normen im Vergleich

Die Normen behandeln zwei Arten von Störaussendungen:

Gestrahlte Störaussendungen Störaussendungen im Frequenzbereich von 30 MHz – 1000 MHz, die in die Umgebung abgestrahlt werden.

Leitungsgebundene Störaussendungen Störaussendungen im Frequenzbereich von 150 kHz – 30 MHz mit Rückwirkung in das Stromversorgungsnetz.

14.3.1 Gestrahlte Störaussendungen

Die Normen haben einen gemeinsamen Ursprung (CISPR 11 und CISPR14), daher kann von einer Gemeinsamkeit bezüglich der in den unterschiedlichen Umgebungen angewandten Testniveaus ausgegangen werden.

Beziehungen zwischen den Normen

Produktspezifisch	Grenzwerte*		
EN 61800-3	EN 61000-6-3	EN 61000-6-4	
Kategorie C1	Äquivalent	Entfällt	30 - 230 MHz 30 dB (μV/m) 230 - 1000 MHz 37 dB (μV/m)
Kategorie C2	Entfällt	Äquivalent	30 - 230 MHz 40 dB (μV/m) 230 - 1000 MHz 47 dB (μV/m)

Kategorie C3	Für diese Grenzwerte gelten keine äquivalenten Werte in den Fachgrundnormen.	30 - 230 MHz 50 dB (μV/m) 230 - 1000 MHz 60 dB (μV/m)
--------------	--	--

^{*}Auf 10 m abgestimmt

Leitungsgebundene Emissionen

EN61800-3 - Grenzwerte für elektromagnetische Strahlung Störungen im Frequenzbereich 30 MHz bis 1000 MHz

Donal	Kategorie C1	Kategorie C2
Band MHz	Elektrische Feldstärke Komponente	Elektrische Feldstärke Komponente
	Quasi-peak dB(「V/m)	Quasi-peak dB(「V/m)
30 δ <i>f</i> δ 230	30	40
230 < <i>f</i> δ 1 000	37	47

HINWEIS: Messabstand 10 m.

Für die Klasse C1, wenn der Feldstärkemessung bei 10 m nicht wegen der hohen Umgebungsgeräuschpegel oder aus anderen Gründen durchgeführt werden, die Messung kann bei 3 m hergestellt werden. Wenn die 3 m Abstand verwendet wird, wird das Messergebnis erhalten zu 10 m durch Subtraktion 10 dB aus dem Ergebnis normalisiert werden. In diesem Fall sollte darauf geachtet werden, in der Nähe von Feldeffekte zu vermeiden, insbesondere wenn die PDS (Power Drive System) ist eine entsprechend geringe Größe und bei Frequenzen in der Nähe von 30 MHz.

Wenn mehrere Laufwerke werden verwendet, um 3 dB Dämpfung pro Laufwerk hinzugefügt werden muss.

AC10V - EMV-Konformität

Norm EN 61800-3		230V 1PH ungefiltert	230V 1PH gefiltert	230V 3PH ungefiltert	230V 3PH gefiltert	400V 3PH ungefiltert	400V 3PH gefiltert	
Leitungsgebundene Emissionen	Kategorie C1		Bei Lieferung des Geräts als Komponente ist ein geeigneter externer Filter erforderlich.		Bei Lieferung des Geräts als Komponente ist ein geeigneter externer Filter erforderlich.		Bei Lieferung des Geräts als Komponente ist ein geeigneter externer Filter erforderlich.	
	Kategorie C2		Bei Lieferung o Komponente is geeigneter ext erforderlich.	st ein	Bei Lieferung des Geräts als Komponente ist ein geeigneter externer Filter erforderlich. Bei Lieferung des als Komponente ist geeigneter externer erforderlich.		nte ist ein	
Leitungsgebund	Kategorie C3 Wobei I<=100A		Bei Ausstattung mit einem externen Filter: Maximale Kabellänge 30m	Wenn mit einem internen Filter ausgestattet Maximale Kabellänge 30m	Bei Ausstattung mit einem externen Filter: Maximale Kabellänge 30m	Wenn mit einem internen Filter ausgestattet Maximale Kabellänge 30m	Bei Ausstattung mit einem externen Filter: Maximale Kabellänge 30m	Wenn mit einem internen Filter ausgestattet Maximale Kabellänge 30m
Gestrahlte Emissionen	Kategorie C3		Kein	spezifisches G	ehäuse erforde	rlich		
Kabel	Spannungsversorgung	Ungeschirmt Von allen anderen Kabeln (rauscharm) Unbegrenzt						
Anforderungen an Kabel	Motorkabel	Kabeltyp Trennung Kabelschirm zur Erde Ausgangsdrossel	Geschirmt/Armiert Von allen anderen Kabeln (rauschbehaftet) Beidseitig Maximal 30 m					
Externer Filter zum Antrieb Externer Filter zum Antrieb Kabeltyp Geschirmt/Armiert Trennung Von allen anderen Kabeln (rauschbehaftet)								

	Längenbegrenzung	0,3 m
	Kabelschirm zur Erde	Beidseitig

14.4 Hinweise zur Konformität in Nordamerika und Kanada (Baugröße 1-5 nur) 14.4.1 UL-Standards

Das UL/cUL-Prüfzeichen gilt für Produkte in den USA und Kanada und bedeutet, dass UL Produktprüfungen und -bewertungen durchgeführt hat sowie ermittelt hat, dass seine strengen Produktsicherheitsstandards erfüllt wurden. Damit ein Produkt die UL-Zulassung erhält, müssen alle Komponenten in diesem Produkt ebenfalls die UL-Zulassung erhalten:

14.4.2 Konformität mit UL-Standards

Dieser Antrieb wurde gemäß UL-Standard UL508C, Akten-Nr. E363934 geprüft und erfüllt die Anforderungen von UL. Um die durchgängige Konformität beim Einsatz dieses Antriebs in Kombination mit anderen Geräten sicherzustellen, sind die folgenden Bedingungen zu erfüllen:

- Installieren Sie den Antrieb nicht in einem Bereich, der Verschmutzungsgrad 2 übersteigt (UL-Standard).
- 2. Eine Installations- und Betriebsanleitung ist mit jedem Gerät zu liefern.

Die folgenden Kennzeichnungen müssen mit einem der folgenden Mittel bereitgestellt werden: durch gesonderte Versendung mit dem Gerät, auf einem abtrennbaren, selbstklebenden dauerhaft angebrachten Schild, das mit dem Gerät versendet wird, oder durch Anbringung an einer beliebigen Stelle auf dem Gerät selbst:

- a) Bezeichnungsmarkierungen für jeden Schaltplan;
- b) Markierungen für ordnungsgemäße Kabelanschlüsse;
- c) "Maximale Umgebungslufttemperatur 40 °C" oder entsprechend;
- d) "Elektronischer Motorüberlastschutz löst aus, wenn der Motor 150 % des FLA (Volllast-Ampere) erreicht" oder entsprechend;
- e) "Gerät in Umgebung mit Verschmutzungsgrad 2 installieren." oder entsprechend;
- f) "Für die Verwendung in Stromkreisen für bis zu 5.000 A eff. (symmetrisch) und maximal 480 V bzw. 240 V geeignet, vorausgesetzt, es werden von COOPER BUSSMANN LLC hergestellte Sicherungen der Klasse T verwendet." oder entsprechend. Eine Liste der empfohlenen Eingangssicherungen finden Sie nachstehend:

Baugröße oder Modell	Sicherungsmodell	Sicherungsnennstrom	
10G-31-0015-XX			
10G-31-0025-XX	110.45	45.4	
10G-31-0035-XX	JJS-15	15 A	
10G-31-0045-XX			
10G-32-0050-XX			
10G-32-0070-XX	JJS-25	25 A	
10G-32-0100-XX			

Konformität 14-6

Baugröße oder Modell	Sicherungsmodell	Sicherungsnennstrom	
10G-11-0015-XX			
10G-11-0025-XX			
10G-11-0035-XX	JJS-15	15 A	
10G-11-0045-XX			
10G-12-0050-XX			
10G-12-0070-XX	JJS-25	25 A	
10G-12-0010-XX			
10G-41-0006-XX			
10G-41-0010-XX	JJS-6	6 A	
10G-41-0015-XX	000 0		
10G-42-0020-XX			
10G-42-0030-XX			
	JJS-15	15 A	
10G-42-0040-XX			
10G-42-0065-XX			
10G-43-0080-XX			
10G-43-0090-XX	JJS-30	30 A	
10G-43-0120-XX			
10G-44-0170-XX	JJS-45	45 A	
10G-44-0230-XX	JJS-60	60 A	
10G-45-0320-XX	JJS-80	80 A	
10G-45-0380-XX	JJS-90	90 A	
10G-45-0440-XX	JJS-100	100 A	
10G-46-0600-XX	AJT-125	125A	
10G-47-0750-XX	AJT-150	150A	
10G-47-0900-XX	AJT-200	200A	
10G-48-1100-XX	AJT-200	200A	
10G-48-1500-XX	AJT-300	300A	
10G-49-1800-XX	AJT-350	350A	
10G-49-2200-XX	AJT-400	400A	
10G-410-2650-XX	AJT-500	500A	
10G-411-3200-XX	AJT-600	600A	
10G-411-3600-XX	AJT-600	600A	

- g) "Integraler elektronischer Kurzschlussschutz bietet keinen Abzweigstromkreisschutz. Der Abzweigstromkreisschutz muss den Anforderungen der aktuellen Ausgabe des National Electrical Code und allen zusätzlich geltenden örtlichen Vorschriften entsprechen." oder entsprechend;
- h) Der Hinweis "ACHTUNG Gefahr durch Stromschlag" ist vorzusehen, gefolgt von Anweisungen, den Bus-Kondensator zu entladen oder der Angabe der erforderlichen Zeit (5 Minuten), die der Bus-Kondensator zur Entladung auf einen Pegel unter 50 VDC benötigt;
- i) "Die Antriebe verfügen über keinen Übertemperaturschutz für den Motor" oder entsprechend;
- j) Nur zur Verwendung in Kanada: "DIE SPANNUNGSSPITZENBEGRENZUNG IST AUF DER EINGANGSSEITE DES SYSTEMS VORZUSEHEN UND MUSS EINE

14-7 Konformität

- NENNSPANNUNG VON 480/240 V (PHASE-ERDE) SOWIE 480/240 V (PHASE-PHASE) AUFWEISEN, FÜR DIE ÜBERSPANNUNGSKATEGORIE III GEEIGNET SEIN UND SCHUTZ FÜR EINE NENNSTEHSTOSSSPANNUNG VON MAXIMAL 6 KV BIETEN" oder entsprechend.
- k) Anschlussmarkierungen für Feldverdrahtungen Verdrahtungsanschlüsse sind mit Markierungen zu versehen, die die ordnungsgemäßen Anschlüsse für die Stromversorgung und Last angeben, oder es ist ein gemäß den Markierungen kodierter Schaltplan fest am Gerät anzubringen:
- I) "Für 60/75 °C zugelassenen Kupferdraht verwenden" oder entsprechend;
- m) Erforderliches Anzugsdrehmoment, Typ und Querschnitt der Kabel wie unten aufgeführt:

Baugröße	Anschlusstyp	Erforderliches Drehmoment (in-lbs)	Kabelmaß (AWG)	Kabeltyp
10G-31-0015-XX				
10G-31-0025-XX	Ein- und	10	12	STR/SOL
10G-31-0035-XX	Ausgangsklemmenblock	10	12	STRISOL
10G-31-0045-XX				
10G-32-0050-XX				
10G-32-0070-XX	Ein- und Ausgangsklemmenblock	10	10	STR/SOL
10G-32-0100-XX	/ taogangonioninionolook			
10G-11-0015-XX				
10G-11-0025-XX	Ein- und	10	4.4	CTD/COL
10G-11-0035-XX	Ausgangsklemmenblock	10	14	STR/SOL
10G-11-0045-XX				
10G-12-0050-XX				
10G-12-0070-XX	Ein- und Ausgangsklemmenblock	10	14	STR/SOL
10G-12-0010-XX	, raegarigement to the			
10G-41-0006-XX				
10G-41-0010-XX	Ein- und Ausgangsklemmenblock	6 A	14	STR/SOL
10G-41-0015-XX	, raegangement to the			
10G-42-0020-XX				
10G-42-0030-XX	Ein- und	10	14	STR/SOL
10G-42-0040-XX	Ausgangsklemmenblock	10	14	STR/SUL
10G-42-0065-XX				
10G-43-0080-XX	Ein- und	10.5	14	STR/SOL
10G-43-0090-XX	Ausgangsklemmenblock	10,5	14	STR/SUL
10G-43-0120-XX	Ein- und Ausgangsklemmenblock	10,5	10	STR/SOL
10G-44-0170-XX	Ein- und Ausgangsklemmenblock	19	10	STR/SOL
10G-44-0230-XX	Ein- und Ausgangsklemmenblock	30,4	8	STR/SOL
10G-45-0320-XX	Ein- und Ausgangsklemmenblock	30,4	6	STR/SOL

Konformität 14-8

Baugröße	Anschlusstyp	Erforderliches Drehmoment (in-lbs)	Kabelmaß (AWG)	Kabeltyp
10G-45-0380-XX 10G-45-0440-XX	Ein- und Ausgangsklemmenblock	30,4	4	STR/SOL
10G-46-0600-XX	Ein- und Ausgangsklemmenblock	39.0	3	STR/SOL
10G-47-0750-XX	Ein- und Ausgangsklemmenblock	96.0	3	STR/SOL
10G-47-0900-XX	Ein- und Ausgangsklemmenblock	96.0	1	
10G-48-1100-XX	Ein- und Ausgangsklemmenblock	96.0	1/0	
10G-48-1500-XX	Ein- und Ausgangsklemmenblock	96.0	3/0	
10G-49-1800-XX	Ein- und Ausgangsklemmenblock	189.0	250kcmil	STR/SOL
10G-49-2200-XX	Ein- und Ausgangsklemmenblock	189.0	300kcmil or 2x1/0	
10G-410-2650-XX	Ein- und Ausgangsklemmenblock	189.0	500kcmil or 2x2/0	
10G-411-3200-XX	Ein- und Ausgangsklemmenblock	330.0	600kcmil or 2x4/0	STR/SOL
10G-411-3600-XX	Ein- und Ausgangsklemmenblock	330.0	750kcmil or 2x4/0	

14-9 Konformität

Erdung – Der für den Erdungsanschluss von vor Ort installierter Ausrüstung vorgesehene Druckkabelverbinder ist durch Markierung mit "G", "GND", "Masse", "Erdung" oder entsprechend oder mit dem Erdungssymbol (IEC 417, Symbol 5019) deutlich zu kennzeichnen.

Das Anzugsdrehmoment und die Kabelmaße für Feldverdrahtungsanschlüsse sind neben dem Anschluss oder im Schaltplan anzugeben.

Baugröße	Anschlusstyp	Erforderliches Drehmoment (in-lbs)	Kabelmaß (AWG)
10G-31-0015-XX			
10G-31-0025-XX			
10G-31-0035-XX			
10G-31-0045-XX			
10G-32-0050-XX			
10G-32-0070-XX			
10G-32-0100-XX			
10G-11-0015-XX			
10G-11-0025-XX			
10G-11-0035-XX			
10G-11-0045-XX			
10G-12-0050-XX			
10G-12-0070-XX			
10G-12-0010-XX 10G-41-0006-XX	Erdungsklemmenblock	6.0	8
10G-41-0006-XX	Erdungskiemmenblock	6,2	0
10G-41-0010-XX			
10G-41-0013-XX			
10G-42-0020-XX			
10G-42-0040-XX			
10G-42-0065-XX			
10G-43-0080-XX			
10G-43-0090-XX			
10G-43-0120-XX			
10G-44-0170-XX			
10G-44-0230-XX			
10G-45-0320-XX			
10G-45-0380-XX			
10G-45-0440-XX			
10G-46-0600-XX		39.0	6
10G-47-0750-XX		96.0	6
10G-47-0900-XX		96.0	6
10G-48-1100-XX		96.0	6
10G-48-1500-XX		96.0	4
10G-49-1800-XX		189.0	3
10G-49-2200-XX		189.0	3
10G-410-2650-XX		96.0	2
10G-411-3200-XX		96.0	1
10G-411-3600-XX		96.0	1

DECLARATION OF CONFORMITY

AC10 SERIES VARIABLE SPEED DRIVES

MANUFACTURERS EC DECLARATIONS OF CONFORMITY

Date CE marked first applied: 01/12/13

EMC Directive
In accordance with the EC Directive
2014/30/EU

We Parker Hannifin Manufacturing Limited, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment) is in accordance with the relevant clauses from the following standards:- EN 61800-3 (2004)(+A1:2012)

Note: Filtered versions

Low Voltage Directive In accordance with the EC Directive 2014/35/EU

We Parker Hannifin Manufacturing Limited, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment), is in accordance with the following standard:-EN 61800-5-1 (2007)

MANUFACTURERS DECLARATIONS OF CONFORMITY

EMC Declaration

We Parker Hannifin Manufacturing Limited, address as below, declare under our sole responsibility that the above Electronic Products when installed and operated with reference to the instructions in the Product Manual (provided with each piece of equipment) is in accordance with the relevant clauses from the following standards:-

BSEN61800-3 (2004)(+A1:2012)

Notes:

Non-filtered versions
This is provided to aid justification for EMC
Compliance when the unit is used as a component.

Low Voltage and Machinery Directives

The above Electronic Products are components to be incorporated into machinery and may not be operated alone.

The complete machinery or installation using this

equipment may only be put into service when all safety considerations of the Directive 2006/42/EC are fully implemented.

Particular reference should be made to EN60204-1 2006 (Safety of Machinery - Electrical Equipment of Machines).

All instructions, warnings and safety information of the

Product Manual must be implemented.

M. fair

Dr. Martin Payn (Drives Engineering & Global EM Compliance Manager)

Parker Hannifin Manufacturing Limited, Automation Group, Electromechanical Drives Business Unit, NEW COURTWICK LANE, LITTLEHAMPTON, WEST SUSSEX BN17 7RZ
TELEPHONE: +44 (0) 1903 737000, FAX: +44 (0) 1903 737100

Registered Number 4806503 England. Registered Office: 55 Maylands Avenue, Hemel Hempstead, Herts HP2 4SJ

15-1 Parameterreferenz

Kapitel 15 Parameterreferenz

15.1 Basisparameter: F100 - F160

	Finaldian			
Funktion- scode	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F100	Benutzerpasswort 0 – 9999			\checkmark
F102	Nennstrom des Wechselrichters (A)		Modellabhängig	0
F103	Leistung des Wechselrichters (kW)		Modellabhängig	0
F104	Reserviert			
F105	Softwareversion		Modellabhängig	Δ
F106	Regelungsmodus	Einstellbereich: 0: Sensorlose Vektorregelung (SVC) 1: Reserviert; 2: VVVF 3: Vektorregelung 1 6 PMSM sensorless vector control	2	х
F107	Passwort aktiv oder nicht	0: Inaktiv, 1: Aktiv	0	\checkmark
F108	Einstellen des Benutzerpassworts	0 – 9999	8	\checkmark
F109	Startfrequenz (Hz)	0,0 – 10,00 Hz	0,0	\checkmark
F110	Haltezeit der Startfrequenz (s)	0,0 - 999,9	0,0	√
F111	Maximalfrequenz (Hz)	F113 – 590,0 Hz	50,00	\checkmark
F112	Minimalfrequenz (Hz)	0,00 Hz – F113	0,50	\checkmark
F113	Zielfrequenz (Hz)	F112 – F111	50,00	\checkmark
F114	1.Hochlaufzeit (s)	0,1 – 3000		\checkmark
F115	1.Auslaufzeit (s)	0,1 – 3000	Modellabhängig	\checkmark
F116	2.Hochlaufzeit (s)	0,1 – 3000		√
F117	2. Auslaufzeit (s)	0,1 – 3000		\checkmark
F118	Basisfrequenz (Hz)	15,00 – 590,0	50,00	х
F119	Referenz für die Hochlauf- bzw. Auslaufzeit	0: 0 – 50,00 Hz 1: 0 – F111	0	x
F120	Totzeit für den Wechsel von Vorwärts- zu Rückwärtslauf	0,0 – 3000	0,0	√
F121	Reserviert			
F122	Rückwärtslauf verboten	0: Inaktiv, 1: Aktiv	0	х
F123	Negative Frequenzen sind bei kombinierter Drehzahlregelung aktiv.	0: Inaktiv, 1: Aktiv	0	x
F124	Schrittbetriebsfrequenz	F112 – F111	5,00 Hz	√
F125	Schrittbetrieb-Hochlaufzeit	0,1 – 3000 s	Modellabhängig	√
F126	Schrittbetrieb-Auslaufzeit	0,1 – 3000 s	wodeliabi lai igig	√
F127·	Ausblendfrequenz A	0,00 – 590,0 Hz	0,00	√
F128	Sprungbreite A	±2,50 Hz	0,00	√
F129	Ausblendfrequenz B	0,00 – 590,0 Hz	0,00	√ Irightor AC10

Funktion- scode	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F130	Sprungbreite B	±2,50 Hz	0,00	V
F131	Elemente der Laufanzeige	0: Ausgangsfrequenz/Funktionscode 1: Ausgangsdrehzahl 2: Ausgangsstrom 4: Ausgangsspannung 8: PN-Spannung 16: PID-Feedbackwert 32: Temperatur 64: Reserviert 128: Lineargeschwindigkeit 256: Eingegebener PID-Wert 512: Reserviert 1024: Reserviert 2048: Ausgangsleistung 4096: Abtriebsdrehmoment	0 + 1 + 2 + 4 + 8 = 15	√
F132	Anzeigeelemente im Stoppstatus	0: Frequenz/Funktionscode 1: Tastenfeld-Schrittbetrieb 2: Zieldrehzahl 4: PN-Spannung 8: PID-Feedbackwert 16: Temperatur 32: Reserviert 64: Eingegebener PID-Wert 128: Reserviert 256: Reserviert 512: Einstellen des Drehmoments	2 + 4 = 6	√
F133	Übersetzungsverhältnis des angetriebenen Systems	0,10 – 200,0	1,0	V
F134	Transmissionsradradius	0,001 – 1,000	0,001	√
F135	Reserviert			
F136	Schlupfkompensation	0 – 10	0	х
F137	Drehmomentausgleichmodi	0: Linearer Ausgleich 1: Quadratischer Ausgleich 2: Benutzerdefinierter Mehrpunktausgleich 3: Automatischer Drehmomentausgleich	3	х
F138	Linearer Ausgleich	1 – 20	Modellabhängig	х
F139	Quadratischer Ausgleich	1: 1,5; 2: 1,8; 3: 1,9; 4: 2,0	1	х
F140	Voltage compensation point frequency (Hz)	0 – F142	1,00	х
F141	Voltage compensation point 1 (%)	0 – 100 %	4	х
F142	Benutzerdefinierter Frequenzpunkt 2	F140 – F144	5,00	х

15-3 Parameterreferenz

Funktion- scode	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F143	Benutzerdefinierter Spannungspunkt 2	0 – 100 %	13	х
F144	Benutzerdefinierter Frequenzpunkt 3	F142 – F146	10,00	х
F145	Benutzerdefinierter Spannungspunkt 3	0 – 100 %	24	х
F146	Benutzerdefinierter Frequenzpunkt 4	F144 – F148	20,00	х
F147	Benutzerdefinierter Spannungspunkt 4	0 – 100 %	45	х
F148	Benutzerdefinierter Frequenzpunkt 5	F146 – F150	30,00	х
F149	Benutzerdefinierter Spannungspunkt 5	0 – 100 %	63	х
F150	Benutzerdefinierter Frequenzpunkt 6	F148 – F118	40,00	х
F151	Benutzerdefinierter Spannungspunkt 6	0 – 100 %	81	х
F152	Ausgangsspannung entsprechend der Übernahmefrequenz	10 – 100 %	100	х
F153	Trägerfrequenzeinstellung	Modellabhängig	Modellabhängig	х
F154	Automatische Spannungsgleichrichtung	Einstellbereich: 0: Inaktiv, 1: Aktiv 2: Inaktiv beim Auslaufen	0	x
F155	Sekundäre digitale Frequenzeinstellung	0 – F111	0	х
F156	Polaritätseinstellung für sekundäre digitale Frequenz	0 – 1	0	х
F157	Auslesen der sekundären Frequenz			Δ
F158	Auslesen der sekundären Frequenzpolarität			Δ
F159	Zufällige Trägerwellenfrequenzwahl	0: Drehzahl normal regeln; 1: Zufällige Trägerwellenfrequenz	1	
F160	Zurücksetzen auf Werkseinstellungen	0: Nicht zurücksetzen auf Werkseinstellungen; 1: Zurücksetzen auf Werkseinstellungen	0	х

15.2 Laufsteuermodus: F200 - F230

Funktion scode	Funktionsdefinition	Einstellbereich	Standardwert	Änderung
F200	Quelle des Startbefehls	0: Tastaturbefehl; 1: Klemmenbefehl; 2: Tastenfeld + Klemme; MODBUS; 3; 4: Tastenfeld + Klemme + MODBUS	4	x
F201	Quelle des Stoppbefehls	0: Tastaturbefehl; 1: Klemmenbefehl; 2: Tastenfeld + Klemme; MODBUS; 3; 4: Tastenfeld + Klemme + MODBUS	4	x
F202	Methode zur Richtungseinstellung	0: Vorwärtslauf gesperrt; 1: Rückwärtslauf gesperrt; 2: Klemmeneinstellung 3: Tastenfeld	0	х
F203	Hauptfrequenzquelle X	0: Digitaleinstellungsspeicher; 1: Extern analog Al1; 2: Extern analog Al2; 3: Reserviert; 4: Drehzahlstufenkontrolle; 5: Kein Speicher durch digitale Einstellung; 6: Reserviert; 7: Reserviert; 8: Reserviert; 9: PID-Einstellung; 10: MODBUS	0	x
F204	Sekundäre Frequenzquelle Y	0: Digitaleinstellungsspeicher; 1: Extern analog Al1; 2: Extern analog Al2; 3: Reserviert; 4: Drehzahlstufenkontrolle; 5: PID-Einstellung; 6: Reserviert;	0	x
F205	Referenz zur Auswahl des Bereichs der sekundären Frequenzquelle Y	Relativ zur Maximalfrequenz; Relativ zur Hauptfrequenz X	0	х
F206	Bereich der sekundären Frequenz Y	0 – 100 %	100	х

15-5 Parameterreferenz

Funktion scode	Funktionsdefinition	Einstellbereich	Standardwert	Änderung
F207	Frequenzquelle	0: X; 1: X + Y; 2: X oder Y (Klemmenumschaltung); 3: X oder X + Y (Klemmenumschaltung); 4: Kombination aus mehrstufiger Drehzahl und analogem Signal 5: X-Y 6: Reserviert;	0	x
F208	Klemme für Zwei- oder Dreileitungsbetrieb	0: Keine Funktion; 1: Zweileitungsbetriebsmodus 1; 2: Zweileitungsbetriebsmodus 2; 3: Dreileitungsbetriebsmodus 1; 4: Dreileitungsbetriebsmodus 2; 5: Start/Stopp gesteuert durch Richtungsimpuls	0	х
F209	Auswählen des Modus zum Stoppen des Motors	Stopp durch Auslaufzeit; Freistopp	0	x
F210	Genauigkeit der Frequenzanzeige	0,01 – 2,00	0,01	√
F211	Drehzahlregelung durch digitale Steuerung	0,01 – 100,00 Hz/s	5,00	√
F212	Richtungsspeicher	0: Inaktiv, 1: Aktiv	0	√
F213	Automatischer Start nach erneutem Einschalten	0: Inaktiv, 1: Aktiv	0	√
F214	Automatischer Start nach Rückstellung	0: Inaktiv, 1: Aktiv	0	√
F215	Autostart-Verzögerungszeit	0,1 – 3000,0	60,0	V
F216	Autostart-Zeiten bei wiederholten Fehlern	0 – 5	0	V
F217	Zeitverzögerung für Fehlerrückstellung	0,0 - 10,0	3,0	√
F218	Reserviert			
F219	EEPROM durch Modbus beschreiben	1: Inaktiv, 0: Aktiv	1	√
F220	Frequenzspeicher nach Abschaltung	0: Inaktiv, 1: Aktiv	0	√
F221 – F223	Reserviert			
F224	Wenn die Zielfrequenz unter der Minimalfrequenz liegt	0: Stopp 1: Lauf bei Minimalfrequenz	1	√
F225 – F227	Reserviert			
F228	Anwendungsauswahl	0: Inaktiv 1: EINFACHE DREHZAHLREGELUNG 2: AUTOMATISCHE/ MANUELLE REGELUNG 3: Drehzahlstufenkontrolle 4: Klemmensteuerung; 5: PID-Regelung	Kein Makro ausgewählt	

Funktion scode	Funktionsdefinition	Einstellbereich	Standardwert	Änderung
F229 – F230	Reserviert			

15-7 Parameterreferenz

15.3 Multifunktionsein- und -ausgangsklemmen: F300 - F330

Funktions-	Funktion			ν .
code	Bedeutung	Einstellbereich	Standardwert	Änderung
F300	Relaistokenausgang	0: Keine Funktion;	1	V
F301	DO1-Tokenausgang	1: Wechselrichter-	14	V
F302	DO2 Tokenausgang	Fehlerschutzeinrichtung; 2: Überlatente Frequenz 1; 3: Überlatente Frequenz 2; 4: Freistopp; 5: Im Laufstatus 1; 6: Gleichstrombremsung; 7: Wechsel zwischen Hochlauf-/Auslaufzeit; 8 – 9: Reserviert; 10: Voralarm Wechselrichterüberlastung; 11: Voralarm Motorüberlast 12: Blockierung; 13: Der Wechselrichter ist laufbereit. 14: Im Laufstatus 2; 15: Zielfrequenz erreicht; 16: Überhitzungsvoralarm; 17: Überlatenter Stromausgang 18: Unterbrechungsschutz für analoge Leitung 19: Reserviert; 20: Nullausgangsstrom erkannt 21: DO1 geregelt durch PC/SPS 22: Reserviert; 23: TA, TC-Fehlerrelaisausgang geregelt durch PC/SPS 24: Watchdog 25 – 39: Reserviert; 40: HF-Leistungsumschaltung	5	
F303 – F306	Reserviert			
F307	Charakteristische Frequenz 1	F112 – F111	10,00	√
F308	Charakteristische Frequenz 2	F112 – F111	50,00	√
F309	Breite der charakteristischen Frequenz (%)	0 – 100	50	V
F310	Charakteristischer Strom (A)	0 – 1000	Nennstrom	√
F311	Breite des charakteristischen Stroms (%)	0 – 100	10	V
F312	Schwellenwert für Erreichen der Zielfrequenz (Hz)	0,00 - 5,00	0,00	V
F313 – F315	Reserviert			

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F316	DI1	0: Keine Funktion;	11	V
1 3 10	Klemmenfunktionseinstellung	1: Laufklemme;	11	V
F317	DI2	2: Stoppklemme;	9	$$
	Klemmenfunktionseinstellung	3: Klemme für mehrstufige	-	,
F318	DI3 Klemmenfunktionseinstellung	Geschwindigkeit 1; 4: Klemme für mehrstufige Geschwindigkeit 2;	15	√
F319	DI4 Klemmenfunktionseinstellung	5: Klemme für mehrstufige Geschwindigkeit 3;	16	$\sqrt{}$
F320	DI5 Klemmenfunktionseinstellung	6: Klemme für mehrstufige Geschwindigkeit 4;	7	$\sqrt{}$
F321	DI6	7: Rückstellungsklemme;	8	
F321	Klemmenfunktionseinstellung	8: Freistoppklemme;	0	
F322	DI7	9: Klemme für externen Freilaufstopp	0	
. 022	Klemmenfunktionseinstellung	10: Klemme "Hochlaufen/Auslaufen		
		unzulässig";		
		11: Schrittbetrieb vorwärts;12: Schrittbetrieb rückwärts		
		13: Klemme AUFWÄRTS zum		
		Erhöhen der Frequenz;		
		14: Klemme ABWÄRTS zum Senken der Frequenz;		
		15: Klemme "FWD";		
		16: Klemme "REV";		
		17: Dreileitungstyp-Eingang Klemme "X";		
		18: Wechsel zwischen Hochlauf-/Auslaufzeit 1;		
		19: Reserviert;		
		20: Reserviert;		
	DI8	21: Umschaltklemme für Frequenzquelle;		
F323	Klemmenfunktionseinstellung	32: Branddruck-Umschaltung	0	$\sqrt{}$
		33: Brand-Notfallsteuerung		
		34: Wechsel zwischen Hochlauf/Auslauf 2		
		37: PTC-Überhitzungsschutz mit gemeinsamem Schließerkontakt		
		38: PTC-Überhitzungsschutz mit gemeinsamem Öffnerkontakt		
		48: HF-Umschaltung		
		52: Schrittbetrieb (ohne Richtung)		
		53: Watchdog		
		54: Frequenzrückstellung		
		55: Umschaltung zwischen manuellem und automatischem Lauf		
		56: Manueller Lauf		
		57: Automatischer Lauf		
Foci		58: Richtung		
F324	Logik der Freistoppklemme	0: Positive Logik (gültig für	0	Х

15-9 Parameterreferenz

Funktions- code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F325	Logik der Klemme für externen Freilaufstopp	Low-Level) 1: Negative Logik (gültig für High-Level)	0	х
F326	Watchdog-Zeit	0,0 - 3000,0	10,0	√
F327	Stoppmodus	0: Freistopp 1: Auslauf bis zum Stillstand	0	х
F328	Klemmenfilterzeiten	1 – 100	10	√
F329	Reserviert			
F330	Diagnose der DIX-Klemme			Δ
F331	Überwachung AI1			Δ
F332	Überwachung AI2			Δ
F335	Relaisausgangssimulation	Einstellbereich:	0	х
F336	DO1-Ausgangssimulation	0: Ausgang aktiv. 1: Ausgang inaktiv.	0	х
F338	AO1-Ausgangssimulation	Einstellbereich: 0 – 4095	0	х
F340	Auswahl der negativen Logik für die Klemme	0: Inaktiv 1: DI1 negative Logik 2: DI2 negative Logik 4: DI3 negative Logik 8: DI4 negative Logik 16: DI5 negative Logik 32: DI6 negative Logik 64: DI7 negative Logik 128:DI8 negative Logik	0	√

15.4 Analogeingänge und -ausgänge F400 - F480

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F400	Untere Grenze des Kanaleingangs Al1	0,00 - F402	0,01	√
F401	Entsprechende Einstellung für untere Grenze des Eingangs Al1	0 – F403	1,00	√
F402	Obere Grenze des Kanaleingangs Al1	F400 – 10,00	10,00	\checkmark
F403	Entsprechende Einstellung für obere Grenze des Eingangs Al1	Max (1,00, F401) – 2,00	2,00	√
F404	Proportionalverstärkung K1 des Kanals Al1	0,0 - 10,0	1,0	√
F405	Al1 Filterzeitkonstante	0,01 – 10,0	0,10	\checkmark
F406	Untere Grenze des Kanaleingangs Al2	0,00 – F408	0,01 V	√
F407	Entsprechende Einstellung für untere Grenze des Eingangs Al2	0 – F409	1,00	√
F408	Obere Grenze des Kanaleingangs Al2	F406 – 10,00	10,00 V	√
F409	Entsprechende Einstellung für obere Grenze des Eingangs Al2	Max (1,00, F407) – 2,00	2,00	√

F410	Proportionalverstärkung K2 des Kanals Al2	0,0 – 10,0	1,0	√
F411	Al2 Filterzeitkonstante	0,01 – 10,0	0,10	V
F418	Tote Zone bei Spannung mit 0 Hz des Kanals Al1	0 – 0,50 V (positiv-negativ)	0,00	√
F419	Tote Zone bei Spannung mit 0 Hz des Kanals Al2	0 – 0,50 V (positiv-negativ)	0,00	√
F421	Seitenwahl	0: Lokales Bedienfeld 1: Fernbedienung 2: Lokales Bedienfeld und Fernbedienung	1	√
F422	Reserviert			
F423	Ausgangsbereich AO1	0: 0 – 5 V; 1: 0 – 10 V oder 0 – 20 mA 2: 4 – 20 mA	1	√
F424	Niedrigste entsprechende Frequenz von AO1	0,0 – F425	0,05 Hz	√
F425	Höchste entsprechende Frequenz von AO1	F424 – F111	50,00 Hz	√
F426	Ausgangskompensation von AO1	0 – 120	100	V
F427	Ausgangskompensation von AO2	0: 0~20mA 1: 4~20mA	0	√
F428	Niedrigste entsprechende Frequenz von AO2	0.0∼F429	0.05	√
F429	Höchste entsprechende Frequenz von AO2	F428~F111	50.00	√
F430	Ausgangskompensation von AO2 (%)	0∼120	100	√

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F431	Auswahl des Analogausgangssignals von AO1	0: Lauffrequenz; 1: Ausgangsstrom;	0	V
F432	Auswahl des Analogausgangssignals von AO2	2: Ausgangsspannung; 3: Analog Al1; 4: Analog Al2; 6: Abtriebsdrehmoment; 7: Eingegeben durch PC/SPS; 8: Zielfrequenz	1	√
F433	Entsprechender Strom für vollständigen Bereich des externen Voltmeters	0,01 – 5,00-Faches des	2	x
F434	Entsprechender Strom für vollständigen Bereich des externen Amperemeters	Nennstroms	2	x
F435 – F436	Reserviert			
F437	Breite des Analogfilters	1 – 100	10	*
F438 – F459	Reserviert			

15-11 Parameterreferenz

F460	Eingangsmodus des Kanals Al1	0: Modus mit geraden Linien 1: Modus mit winkligen Linien	0	х
F461	Eingangsmodus des Kanals Al2	0: Modus mit geraden Linien 1: Modus mit winkligen Linien	0	x
F462	Al1 Einfügepunkt A1 Spannungswert	F400 – F464	2,00 V	х
F463	Al1 Einfügepunkt A1 Einstellwert	F401 – F465	1,20	х
F464	Al1 Einfügepunkt A2 Spannungswert	F462 – F466	5,00 V	х
F465	Al1 Einfügepunkt A2 Einstellwert	F463 – F467	1,50	х
F466	Al1 Einfügepunkt A3 Spannungswert	F464 – F402	8,00 V	х
F467	Al1 Einfügepunkt A3 Einstellwert	F465 – F403	1,80	х
F468	Al2 Einfügepunkt B1 Spannungswert	F406 – F470	2,00 V	х
F469	Al2 Einfügepunkt B1 Einstellwert	F407 – F471	1,20	х
F470	Al2 Einfügepunkt B2 Spannungswert	F468 – F472	5,00 V	х
F471	Al2 Einfügepunkt B2 Einstellwert	F469 – F473	1,50	х
F472	Al2 Einfügepunkt B3 Spannungswert	F470 – F412	8,00 V	х
F473	Al2 Einfügepunkt B3 Einstellwert	F471 – F413	1,80	х

15.5 Mehrstufige Drehzahlregelung: F500 - F580

Funktions- code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F500	Drehzahlstufentyp	0: 3-stufige Drehzahl; 1: 15-stufige Drehzahl; 2: Max. 8-stufige Drehzahl mit automatischem Zyklus	1	х
F501	Auswahl der Drehzahlstufe durch Drehzahlregelung mit automatischem Zyklus	2-8	7	V
F502	Auswahl der Zyklusanzahl für die Drehzahlregelung mit automatischem Zyklus	0 – 9999 (Wenn der Wert auf 0 gesetzt ist, führt der Wechselrichter einen Endloszyklus aus)	0	√
F503	Status nach Abschluss des automatischen Zyklus	0: Stopp 1: Betrieb auf letzter Drehzahlstufe fortsetzen	0	V
F504	Frequenzeinstellung für Drehzahlstufe 1	F112 – F111	5,00 Hz	√
F505	Frequenzeinstellung für Drehzahlstufe 2	F112 – F111	10,00 Hz	√
F506	Frequenzeinstellung für Drehzahlstufe 3	F112 – F111	15,00 Hz	√
F507	Frequenzeinstellung für Drehzahlstufe 4	F112 – F111	20,00 Hz	√
F508	Frequenzeinstellung für Drehzahlstufe 5	F112 – F111	25,00 Hz	√
F509	Frequenzeinstellung für Drehzahlstufe 6	F112 – F111	30,00 Hz	√
F510	Frequenzeinstellung für Drehzahlstufe 7	F112 – F111	35,00 Hz	√
F511	Frequenzeinstellung für Drehzahlstufe 8	F112 – F111	40,00 Hz	√
F512	Frequenzeinstellung für Drehzahlstufe 9	F112 – F111	5,00 Hz	\checkmark
F513	Frequenzeinstellung für Drehzahlstufe 10	F112 – F111	10,00 Hz	√

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F514	Frequenzeinstellung für Drehzahlstufe 11	F112 – F111	15,00 Hz	√
F515	Frequenzeinstellung für Drehzahlstufe 12	F112 – F111	20,00 Hz	√
F516	Frequenzeinstellung für Drehzahlstufe 13	F112 – F111	25,00 Hz	√
F517	Frequenzeinstellung für Drehzahlstufe 14	F112 – F111	30,00 Hz	\checkmark
F518	Frequenzeinstellung für Drehzahlstufe 15	F112 – F111	35,00 Hz	√
F519 – F533	Hochlaufzeiteinstellung für die Drehzahlen von Stufe 1 bis Stufe 15	0,1 – 3000 s		√
F534 – F548	Auslaufzeiteinstellung für die Drehzahlen von Stufe 1 bis Stufe 15	0,1 – 3000 s	Modellabhängig	√
F549 – F556	Laufrichtungen für Drehzahlstufen von Stufe 1 bis Stufe 8	0: Vorwärtslauf; 1: Rückwärtslauf	0	√
F557 – F564	Laufrichtungen für Drehzahlstufen von Stufe 1 bis Stufe 8	0,1 – 3000 s	1,0 s	√
F565 – F572	Stoppzeit nach Durchlaufen der Drehzahlstufen von Stufe 1 bis Stufe 8	0,0 – 3000 s	0,0 s	√
F573 – F579	Laufrichtungen für Drehzahlstufen von Stufe 9 bis Stufe 15	0: Vorwärtslauf; 1: Rückwärtslauf	0	√
F580	Reserviert			

15.6 Hilfsfunktionen: F600 - F670

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F600	Auswahl der Gleichstrombremsfunktion	0: Inaktiv, 1: Bremsen vor dem Start; 2: Bremsen beim Stoppen; 3: Bremsen beim Starten und Stoppen	0	x
F601	Anfangsfrequenz für Gleichstrombremsung	0,20 - 50,00	1,00	√
F602	Gleichstrombremswirkung vor dem Start	0 – 100	10	√
F603	Gleichstrombremswirkung beim Stoppen	0 – 100	10	√
F604	Bremsdauer vor dem Start	0,00 - 30,00	0,50	√
F605	Bremsdauer beim Stoppen	0,00 - 30,00	0,50	√
F606	Reserviert			
F607	Auswahl der Blockiereinstellungsfunktion	0: Inaktiv 1: Aktiv 2: Reserviert 3: Spannungs-/ Stromregelung 4: Spannungsregelung 5: Stromregelung	0	√
F608	Einstellung des Blockierstroms (%)	60 – 200	160	√
F609	Einstellung der Blockierspannung (%)	110 – 200	1 Phase: 130 3 Phasen: 140	V

15-13 Parameterreferenz

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F610	Beurteilungszeit für Blockierschutz	0,1 – 3000	60,0	√
F611	Schwellenwert für dynamische Bremsung (V)	200 – 1000	Modellabhängig	Δ
F612	Relative Einschaltdauer für dynamische Bremsung (%)	0 – 100 %	80	х
F613	Flycatching	0: Inaktiv 1: Aktiv 2: Aktiv beim ersten Mal	0	х
F614	Flycatching-Geschwindigkeitsmodus	0: Flycatching aus Frequenzspeicher 1: Flycatching aus Maximalfrequenz 2: Flycatching aus Frequenzspeicher und Richtungsspeicher 3: Flycatching aus Maximalfrequenz und Frequenzspeicher	0	х

F615	Flycatching-Geschwindigkeit	1 – 100	20	х
F613 – F621	Reserviert			
F622	Dynamischer Bremsmodus	0: Feste relative Einschaltdauer 1: Automatische relative Einschaltdauer	0	~
F627	Strombegrenzung beim Flycatching	50 – 200	100	Х
F631	Auswahl für Gleichspannungseinstellung	0: Inaktiv, 1: Aktiv	0	√
F632	Zielspannung des Gleichspannungsstellers (V)	200 – 800	Modellabhängig	√0
F633 – F649	Reserviert			
F650	HF-Leistung	Einstellbereich: 0: Inaktiv, 1: Klemme aktiviert 2: Modus 1 aktiviert 3: Modus 2 aktiviert	2	хО
F651	Umschaltfrequenz 1	F652 – 150,00	100,00	√ O
F652	Umschaltfrequenz 2	0 – F651	95,00	√ O
F653 – F670	Reserviert			

15.7 Zeitgebersteuerung und Schutzfunktion: F700 - F770

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F700	Auswahl des Freistoppmodus für die	0: sofortiger Freistopp;	0	\checkmark

Funktions-	Funktion	Finatallharaigh	Ctondordwort	Ändomma
code	Bedeutung	Einstellbereich	Standardwert	Änderung
	Klemme	1: verzögerter Freistopp		
F701	Verzögerungszeit für Freistopp und programmierbare Klemmenaktion	0,0 - 60,0 s	0,0	\checkmark
F702	Lüfterregelungsmodus	temperaturgesteuert Betrieb, wenn der Wechselrichter eingeschaltet wird Gesteuert durch Laufstatus	2	√
F703	Reserviert			
F704	Koeffizient für Voralarm bei Wechselrichter-Überlast (%)	50 – 100	80	х
F705	Überlast-Anpassungsverstärkung	50 – 100	80	х
F706	Koeffizient für Wechselrichter-Überlast %	120 – 190	150	х
F707	Koeffizient für Motorüberlast %	20 – 100	100	х
F708	Erfassung des letzten Störungstyps	Einstellbereich: 2: Überstrom (OC) 3: Überspannung (OE)		Δ
F709	Erfassung des Störungstyps für zweitletzte Störung	4: Ausfall der Eingangsphase (PF1)		Δ
F710	Erfassung des Störungstyps für drittletzte Störung	5: Wechselrichter-Überlast (OL1) 6: Unterspannung (LU) 7: Überhitzung (OH) 8: Motorüberlast (OL2) 11: Externe Störung (ESP) 13: Analyseparameter ohne Motor (Err2) 16: Überstrom 1 (OC1) 17: Ausfall der Ausgangsphase (PF0) 18: Aerr Analoge Leitung getrennt 23: Err5 PID-Parameter falsch eingestellt 45: Kommunikations-Timeout (CE) 46: Flycatching-Fehler (FL) 49: Watchdog fault (Err6) 67: Overcurrent (OC2)		Δ
F711	Fehlerfrequenz für letzte Störung			Δ
F712	Fehlerstrom für letzte Störung			Δ
F713	Fehler-PN-Spannung für letzte Störung			Δ
F714	Fehlerfrequenz für zweitletzte Störung			Δ
F715	Fehlerstrom für zweitletzte Störung			Δ
F716	Fehler-PN-Spannung für zweitletzte Störung			Δ
F717	Fehlerfrequenz für drittletzte Störung			Δ

15-15 Parameterreferenz

Funktions-	Funktion			
code	Bedeutung	Einstellbereich	Standardwert	Änderung
F718	Fehlerstrom für drittletzte Störung			Δ
F719	Fehler-PN-Spannung für drittletzte Störung			Δ
F720	Erfassung von Überstromschutz-Fehlerzeiten			Δ
F721	Erfassung von Überspannungsschutz-Fehlerzeiten			Δ
F722	Erfassung von Überhitzungsschutz-Fehlerzeiten			Δ
F723	Erfassung von Überlastschutz-Fehlerzeiten			Δ
F724	Ausfall der Eingangsphase	0: Inaktiv, 1: Aktiv	1	Ох
F725	Reserviert			
F726	überheizen	0: Inaktiv, 1: Aktiv	1	Ох
F727	Ausfall der Ausgangsphase	0: Inaktiv, 1: Aktiv	0	0
F728	Ausfall der Eingangsphasen-Filterungskonstante	0,1 – 60,0	0,5	√
F730	Überhitzungsschutz-Filterungskonstante	0,1 – 60,0	5,0	√
F732	Spannungsschwelle für Unterspannungsschutz	0 – 450	Modellabhängig	0
F737	Überstrom 1-Schutz	0: Inaktiv, 1: Aktiv	0	
F738	Koeffizient für Überstrom 1-Schutz	0,50 - 3,00	2,50	
F739	Erfassung von Überstrom 1-Schutzauslösungen			Δ
F740	Reserviert			
F741	Schutz vor Trennung des Analogsignals	0: Inaktiv 1: Anzeige von Stopp und AErr. 2: Stopp und AErr werden nicht angezeigt. 3: Wechselrichter läuft mit Minimalfrequenz. 4: Reserviert	0	√
F742	Schwellenwert für Schutz vor Trennung des Analogsignals (%)	1 – 100	50	0
F745	Schwellenwert für Voralarm bei Überhitzung (%)	0 – 100	80	O*
F747	Autom. Einstellung der Trägerfrequenz	0: Inaktiv, 1: Aktiv	1	V
F754	Nullstrom-Schwellenwert (%)	0 – 200	5	х
F755	Nullstromdauer	0 – 60	0,5	√

15.8 Motor Parameter F800 - F830

Funktions- code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F800	Abstimmung der Motorparameter	Einstellbereich: 0: Inaktiv, 1: Abstimmung bei laufendem Motor; 2: Abstimmung bei stehendem Motor	0	х
F801	Nennleistung	0,2 – 1000 kW		Ох
F802	Nennspannung	1 – 440 V		Ох
F803	Nennstrom	0,1 – 6500 A		Ох
F804	Anzahl der Motorpole	2 – 100	4	О Д
F805	Nenndrehzahl	1 – 30000		Ох
F806	Statorwiderstand (Ω)	0.001~65.53 Ω (for 22kw and below 22kw) 0.1~6553mΩ (For above 22kw)	Modellabhängig	Ох
F807	Rotorwiderstand (Ω)	$0.001\sim65.53\Omega$ (for 22kw and below 22kw) $0.1\sim6553$ m Ω (For above 22kw)	Modellabhängig	Ох
F808	Streuinduktivität (mH)	0.01~655.3mH (for 22kw and below 22kw) 0.001~65.53mH (for above 22kw)	Modellabhängig	Ох
F809	Gegeninduktivität	0.01~655.3mH (for 22kw and below 22kw) 0.001~65.53mH (for above 22kw)	Modellabhängig	Ох
F810	Motornennleistung	1,00 – 590,0 Hz	50,00	Ох
F812	Vorerregungszeit	0,000 – 3,000 s	0,30	√
F813	Drehzahlregelung KP1	0.01~20.00 (for 22kw and below 22kw) 1~100 (For above 22kw)	Modellabhängig	0 √
F814	Drehzahlregelung KI1	0.01~2.00 (for 22kw and below 22kw) 0.01~10.00 (For above 22kw)	Modellabhängig	O √
F815	Drehzahlregelung KP2	0.01~20.00 (for 22kw and below 22kw) 1~100 (For above 22kw)	Modellabhängig	0 √
F816	Drehzahlregelung KI2	0.01~2.00 (for 22kw and below 22kw) 0.01~10.00 (For above 22kw)	Modellabhängig	0 √
F817	PID-Schaltfrequenz 1	0 – F111	5,00	√
F818	PID-Schaltfrequenz 2	F817 – F111	50,00	√

15-17 Parameterreferenz

Funktions- code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F819 – F860	Reserviert		Modellabhängig	√
F870	PMSM back electromotive force (mV/rpm)	0,1 – 999,9	Modellabhängig	√
F871	PMSM D-axis inductance (mH)	0,01 – 655,35	Modellabhängig	√
F872	PMSM Q-axis inductance (mH)	0,01 – 655,35	Modellabhängig	√
F873	PMSM stator resistance (Ω)	0.001 – 65.535	Modellabhängig	√
F876	PMSM injection current without load (%)	0,0 – 100,0 %	20,0	√
F877	PMSM injection current compensation without load (%)	0,0 - 50,0 %	0,0	√
F878	PMSM cut-off point of injection current compensation without load (%)	0,0 - 50,0 %	10,0	√

15.9 Kommunikationsparameter F900 – F930

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F900	Kommunikationsadresse	1 – 255: Eindeutige Adresse des Wechselrichters0: Broadcast-Adresse	1	√
F901	Kommunikationsmodus	1: ASCII 2: RTU	1	O √
F902	Stop Byte	1 – 2	2	√
F903	Paritätsprüfung	0: Inaktiv 1: Ungerade 2: Gerade	0	√
F904	Baudrate	0: 1200 1: 2400 2: 4800 3: 9.600 4: 19200 5: 38400 6: 57600	3	V
F905	Kommunikations-Timeout	0,0 – 3000,0	0,0	√
F906 – F930	Reserviert			

15.10 PID-Parameter: FA00 - FA80

Funktions- code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FA01	Signalquelle für PID-Referenz	0: FA04 1: Al1 2: Al2	0	Х
FA02	Signalquelle für PID-Rückkopplung	1: Al1 2: Al2	0	\checkmark
FA03	Max. Grenzwert für PID-Einstellung (%)	FA04 – 100,0	10,00	\checkmark
FA04	Digitaler Einstellwert für die PID – Einstellung (%)	FA05 – FA03	50,0	√

Funktions-	Funktion	Einstellbereich	Standardwert	Änderung
code	Bedeutung			
FA05	Min. Grenzwert für PID-Einstellung (%)	0,0 – FA04	0,0	V
FA06	PID-Polarität	0: Rückkopplung 1: Gegenkopplung	1	x
FA07	Auswahl der Ruhezustandsfunktion	0: Aktiv 1: Inaktiv	0	х
FA09	Min. Frequenz für PID-Einstellung (Hz)	Max (F112, 0,1) – F111	5,00	V
FA10	Verzögerungszeit für Ruhezustand (s)	0 – 500,0	15,0	V
FA11	Verzögerungszeit für Wake-up (s)	0,0 - 3000	3,0	√
FA12	Maximum output frequency of PID loop	FA09 – F111	50.00	V
FA18	Wenn das Ziel der PID-Einstellung geändert wird	0: Inaktiv, 1: Aktiv	1	х
FA19	Proportionale Verstärkung P	0,00 - 10,00	0,3	√
FA20	Integrationszeit I (s)	0,0 - 100,0 s	0,3	√
FA21	Zeitdifferenz D (s)	0,00 - 10,00	0,0	√
FA22	PID-Abtastzeitraum (s)	0,1 - 10,0 s	0,1	√
FA29	PID-Totzeit (%)	0,0 - 10,0	2,0	√
FA58	Eingegebener Branddruckwert (%)	0,0 – 100,0	80,0	√
FA59	Notfallbrandmodus	Inaktiv Notfallbrandmodus 1 Notfallbrandmodus 2	0	V
FA60	Lauffrequenz im Notfallbrandmodus	F112 – F111	50,0	√
FA61	Reserviert			
FA62	Bei inaktiver Brand-Notfallsteuerungsklemme	Wechselrichter kann nicht manuell gestoppt werden Wechselrichter kann manuell gestoppt werden	0	×
FA63 – FA80	Reserviert			

15.11 Parameter für die Drehmomentregelung: FC00 - FC40

Funktions - code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FC00	Auswahl der Drehzahl-/Drehmomentregelung	0: Drehzahlregelung1: Drehzahlregelung2: Klemmenumschaltung	0	√
FC01	Verzögerungszeit der Umschaltung zwischen Drehmoment-/Drehzahlregelung (s)	0,0 – 1,0	0,1	x
FC02	Drehmoment-Hochlauf-/Auslaufzeit (s)	0,1 – 100,0	1	√
FC03 – FC05	Reserviert			
FC06	Quelle für Drehmomentreferenz	0: Digitale Übertragung (FC09)	0	х

15-19 Parameterreferenz

Funktions	Funktion			
- code	Bedeutung	Einstellbereich	Standardwert	Änderung
		1: Analogeingang Al1		
		2: Analogeingang Al2		
FC07	Koeffizient für Drehmomentreferenz	0 – 3,000	3,000	Х
FC08	Reserviert			
FC09	Befehlswert für Drehmomentreferenz (%)	0 – 300,0	100,0	1
FC10 – FC13	Reserviert			
FC14	Quelle für Offset-Drehmomentreferenz	0: Digitale Übertragung (FC17) 1: Analogeingang AI1 2: Analogeingang AI2	0	x
FC15	Koeffizient für Offset-Drehmoment	0 – 0,500	0,500	Х
FC16	Grenzfrequenz für Offset-Drehmoment (%)	0 – 100,0	10,00	х
FC17	Befehlswert für Offset-Drehmoment (%)	0 – 50,0	10,00	√
FC18 – FC21	Reserviert			
FC22	Quelle für Drehzahlbegrenzung vorwärts	0: Digitale Übertragung (FC23) 1: Analogeingang Al1 2: Analogeingang Al	0	x
FC23	Drehzahlbegrenzung vorwärts (%)	0 – 100,0	10,00	√
FC24	Quelle für Drehzahlbegrenzung rückwärts	0: Digitale Übertragung (FC25) 1: Analogeingang AI1 2: Analogeingang AI	0	x
FC25	Drehzahlbegrenzung rückwärts (%)	0 – 100,0	10,00	√
FC26 – FC27	Reserviert			
FC28	Quelle für Drehmomentbegrenzung durch Antrieb	0: Digitale Übertragung (FC30) 1: Analogeingang AI1 2: Analogeingang AI2	0	x
FC29	Koeffizient für Drehmomentbegrenzung durch Antrieb	0 – 3,000	3,000	х
FC30	Drehmomentbegrenzung durch Antrieb (%)	0 – 300,0	200,0	√
FC31	Reserviert			
FC32	Reserviert			
FC33	Quelle für regeneratorische Drehmomentbegrenzung	0: Digitale Übertragung (FC35) 1: Analogeingang Al1 2: Analogeingang Al2	0	х

Funktions - code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FC34	Koeffizient für regeneratorische Drehmomentbegrenzung	0 – 3,000	3,000	
FC35	Regeneratorische Drehmomentbegrenzung (%)	0 – 300,0	200,00	√
FC36 – FC40	Reserviert			

Hinweis:

- x gibt an, dass Funktionscode nur im Stoppstatus geändert werden kann.
- $\sqrt{}$ gibt an, dass Funktionscode im Stopp- und Laufstatus geändert werden kann.
- Δ gibt an, dass Funktionscode im Stopp- oder Laufstatus nur angezeigt, aber nicht geändert werden kann.
- O gibt an, dass Funktionscode nicht initialisiert werden kann, da der Wechselrichter die Werkseinstellungen wiederherstellt, aber manuell geändert werden kann.

15.6 Hilfsfunktionen: F600 - F670

Funktions-code	Funktion Bedeutung		Einstellbereich	Standardwert	Änderung
F600	Auswahl der Gleichstromb	remsfunktion	0: Inaktiv, 1: Bremsen vor dem Start; 2: Bremsen beim Stoppen; 3: Bremsen beim Starten und Stoppen	0	х
F601	Anfangsfrequenz für Gleic	nstrombremsung	0,20 - 50,00	1,00	√
F602	Gleichstrombremswirkun	g vor dem Start	0 – 100	10	√
F603	Gleichstrombremswirkun	g beim Stoppen	0 – 100	10	√
F604	Bremsdauer vor dem Start		0,00 - 30,00	0,50	√
F605	Bremsdauer beim Stoppen		0,00 - 30,00	0,50	√
F606	Reserviert				
F607	Auswahl der Blockiereinste	ellungsfunktion	0: Inaktiv1: Aktiv2: Reserviert3: Spannungs-/ Stromregelung4: Spannungsregelung5: Stromregelung	0	√
F608	Einstellung des Blockiers	stroms (%)	60 – 200	160	√
F609	Einstellung der Blockiers	pannung (%)	110 – 200	1 Phase: 130 3 Phasen: 140	√
F610	Beurteilungszeit für Blocki	erschutz	0,1 – 3000	60,0	√
F611	Schwellenwert für dynam Bremsung (V)	nische	200 – 1000	Modellabhängig	Δ
F612	Relative Einsc Bremsung (%)	ür dynamische	0 – 100 %	80	x

15-21 Parameterreferenz

F613	Flycatching	0: Inaktiv 1: Aktiv 2: Aktiv beim ersten Mal	0	х
F614	Flycatching-Geschwindigkeitsmodus	0: Flycatching aus Frequenzspeicher 1: Flycatching aus Maximalfrequenz 2: Flycatching aus Frequenzspeicher und Richtungsspeicher 3: Flycatching aus Maximalfrequenz und Frequenzspeicher	0	x
F615	Flycatching-Geschwindigkeit	1 – 100	20	х

F613 – F621	Reserviert			
F622	Dynamischer Bremsmodus	0: Feste relative Einschaltdauer 1: Automatische relative Einschaltdauer	0	√
F627	Strombegrenzung beim Flycatching	50 – 200	100	Х
F631	Auswahl für Gleichspannungseinstellung	0: Inaktiv, 1: Aktiv	0	√
F632	Zielspannung des Gleichspannungsstellers (V)	200 – 800	Modellabhängig	√0
F633 – F649	Reserviert			
F650	HF-Leistung	Einstellbereich: 0: Inaktiv, 1: Klemme aktiviert 2: Modus 1 aktiviert 3: Modus 2 aktiviert	2	хO
F651	Umschaltfrequenz 1	F652 – 150,00	100,00	√0
F652	Umschaltfrequenz 2	0 – F651	95,00	√0
F653 – F670	Reserviert			

15.7 Zeitgebersteuerung und Schutzfunktion: F700 - F770

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F700	Auswahl des Freistoppmodus für die Klemme	0: sofortiger Freistopp; 1: verzögerter Freistopp	0	√
F701	Verzögerungszeit für Freistopp und programmierbare Klemmenaktion	0,0 - 60,0 s	0,0	√
F702	Lüfterregelungsmodus	temperaturgesteuert Betrieb, wenn der Wechselrichter eingeschaltet wird Gesteuert durch Laufstatus	2	√
F703	Reserviert			
F704	Koeffizient für Voralarm bei Wechselrichter-Überlast (%)	50 – 100	80	х
F705	Überlast-Anpassungsverstärkung	50 – 100	80	х
F706	Koeffizient für Wechselrichter-Überlast %	120 – 190	150	х
F707	Koeffizient für Motorüberlast %	20 – 100	100	х
F708	Erfassung des letzten Störungstyps	Einstellbereich: 2: Überstrom (OC) 3: Überspannung (OE)		Δ
F709	Erfassung des Störungstyps für zweitletzte Störung	4: Ausfall der Eingangsphase (PF1)		Δ
F710	Erfassung des Störungstyps für drittletzte Störung	5: Wechselrichter-Überlast (OL1)		Δ

15-23 Parameterreferenz

Funktions-	Funktion	,		× .
code	Bedeutung	Einstellbereich	Standardwert	Änderung
		6: Unterspannung (LU)		
		7: Überhitzung (OH)		
		8: Motorüberlast (OL2) 11: Externe Störung (ESP)		
		13: Analyseparameter ohne		
		Motor (Err2)		
		16: Überstrom 1 (OC1)		
		17: Ausfall der Ausgangsphase (PF0)		
		18: Aerr Analoge Leitung getrennt		
		23: Err5 PID-Parameter		
		falsch eingestellt 45: Kommunikations-Timeout		
		(CE) 46: Flycatching-Fehler (FL)		
		49: Watchdog fault (Err6)		
		67: Overcurrent (OC2)		
F711	Fehlerfrequenz für letzte Störung			Δ
F712	Fehlerstrom für letzte Störung			Δ
F713	Fehler-PN-Spannung für letzte Störung			Δ
F714	Fehlerfrequenz für zweitletzte Störung			Δ
F715	Fehlerstrom für zweitletzte Störung			Δ
F716	Fehler-PN-Spannung für zweitletzte Störung			Δ
F717	Fehlerfrequenz für drittletzte Störung			Δ
F718	Fehlerstrom für drittletzte Störung			Δ
F719	Fehler-PN-Spannung für drittletzte Störung			Δ
F720	Erfassung von Überstromschutz-Fehlerzeiten			Δ
F721	Erfassung von Überspannungsschutz-Fehlerzeiten			Δ
F722	Erfassung von Überhitzungsschutz-Fehlerzeiten			Δ
F723	Erfassung von Überlastschutz-Fehlerzeiten			Δ
F724	Ausfall der Eingangsphase	0: Inaktiv, 1: Aktiv	1	Ох
F725	Reserviert			
F726	überheizen	0: Inaktiv, 1: Aktiv	1	Ох
F727	Ausfall der Ausgangsphase	0: Inaktiv, 1: Aktiv	0	0
F728	Ausfall der Eingangsphasen-Filterungskonstante	0,1 – 60,0	0,5	√
F730	Überhitzungsschutz-Filterungskonstante	0,1 - 60,0	5,0	√
F732	Spannungsschwelle für Unterspannungsschutz	0 – 450	Modellabhängig	0
F737	Überstrom 1-Schutz	0: Inaktiv, 1: Aktiv	0	

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F738	Koeffizient für Überstrom 1-Schutz	0,50 – 3,00	2,50	
F739	Erfassung von Überstrom 1-Schutzauslösungen			Δ
F740	Reserviert			
F741	Schutz vor Trennung des Analogsignals	 1: Anzeige von Stopp und AErr. 2: Stopp und AErr werden nicht angezeigt. 3: Wechselrichter läuft mit Minimalfrequenz. 4: Reserviert 	0	V
F742	Schwellenwert für Schutz vor Trennung des Analogsignals (%)	1 – 100	50	О
F745	Schwellenwert für Voralarm bei Überhitzung (%)	0 – 100	80	O*
F747	Autom. Einstellung der Trägerfrequenz	0: Inaktiv, 1: Aktiv	1	\checkmark
F754	Nullstrom-Schwellenwert (%)	0 – 200	5	х
F755	Nullstromdauer	0 – 60	0,5	√

15.8 Motor Parameter F800 - F830

Funktions- code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F800	Abstimmung der Motorparameter	Einstellbereich: 0: Inaktiv, 1: Abstimmung bei laufendem Motor; 2: Abstimmung bei stehendem Motor	0	x
F801	Nennleistung	0,2 – 1000 kW		Ох
F802	Nennspannung	1 – 440 V		Ох
F803	Nennstrom	0,1 – 6500 A		Ох
F804	Anzahl der Motorpole	2 – 100	4	О Δ
F805	Nenndrehzahl	1 – 30000		Ох
F806	Statorwiderstand (Ω)	$0.001\sim65.53\Omega$ (for 22kw and below 22kw) $0.1\sim6553\mathrm{m}\Omega$ (For above 22kw)	Modellabhängig	Ох
F807	Rotorwiderstand (Ω)	$0.001\sim65.53\Omega$ (for 22kw and below 22kw) $0.1\sim6553$ m Ω (For above 22kw)	Modellabhängig	Ох
F808	Streuinduktivität (mH)	0.01~655.3mH (for 22kw and below 22kw) 0.001~65.53mH (for above 22kw)	Modellabhängig	Ох

15-25 Parameterreferenz

Funktions-	Funktion	Einstellbereich	Standardwert	Änderung
code	Bedeutung			J
F809	Gegeninduktivität	0.01~655.3mH (for 22kw and below 22kw) 0.001~65.53mH (for above 22kw)	Modellabhängig	Ox
F810	Motornennleistung	1,00 – 590,0 Hz	50,00	Ох
F812	Vorerregungszeit	0,000 - 3,000 s	0,30	√
F813	Drehzahlregelung KP1	0.01~20.00 (for 22kw and below 22kw) 1~100 (For above 22kw)	Modellabhängig	0 1
F814	Drehzahlregelung KI1	0.01~2.00 (for 22kw and below 22kw) 0.01~10.00 (For above 22kw)	Modellabhängig	0 √
F815	Drehzahlregelung KP2	0.01~20.00 (for 22kw and below 22kw) 1~100 (For above 22kw)	Modellabhängig	0 √
F816	Drehzahlregelung KI2	0.01~2.00 (for 22kw and below 22kw) 0.01~10.00 (For above 22kw)	Modellabhängig	0 \
F817	PID-Schaltfrequenz 1	0 – F111	5,00	V
F818	PID-Schaltfrequenz 2	F817 – F111	50,00	V
F819 – F860	Reserviert		Modellabhängig	√
F870	PMSM back electromotive force (mV/rpm)	0,1 – 999,9	Modellabhängig	√
F871	PMSM D-axis inductance (mH)	0,01 – 655,35	Modellabhängig	√
F872	PMSM Q-axis inductance (mH)	0,01 – 655,35	Modellabhängig	√
F873	PMSM stator resistance (Ω)	0.001 - 65.535	Modellabhängig	V
F876	PMSM injection current without load (%)	0,0 – 100,0 %	20,0	√
F877	PMSM injection current compensation without load (%)	0,0 - 50,0 %	0,0	√
F878	PMSM cut-off point of injection current compensation without load (%)	0,0 - 50,0 %	10,0	√

15.9 Kommunikationsparameter F900 – F930

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F900	Kommunikationsadresse	1 – 255: Eindeutige Adresse des Wechselrichters0: Broadcast-Adresse	1	√
F901	Kommunikationsmodus	1: ASCII 2: RTU	1	O √
F902	Stop Byte	1 – 2	2	√
F903	Paritätsprüfung	0: Inaktiv 1: Ungerade 2: Gerade	0	√

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
F904	Baudrate	0: 1200 1: 2400 2: 4800 3: 9.600 4: 19200 5: 38400 6: 57600	3	√
F905	Kommunikations-Timeout	0,0 – 3000,0	0,0	\checkmark
F906 – F930	Reserviert			

15.10 PID-Parameter: FA00 - FA80

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FA01	Signalquelle für PID-Referenz	0: FA04 1: Al1 2: Al2	0	х
FA02	Signalquelle für PID-Rückkopplung	1: Al1 2: Al2	0	√
FA03	Max. Grenzwert für PID-Einstellung (%)	FA04 – 100,0	10,00	√
FA04	Digitaler Einstellwert für die PID – Einstellung (%)	FA05 – FA03	50,0	√
FA05	Min. Grenzwert für PID-Einstellung (%)	0,0 - FA04	0,0	√
FA06	PID-Polarität	0: Rückkopplung 1: Gegenkopplung	1	х
FA07	Auswahl der Ruhezustandsfunktion	0: Aktiv 1: Inaktiv	0	х
FA09	Min. Frequenz für PID-Einstellung (Hz)	Max (F112, 0,1) – F111	5,00	√
FA10	Verzögerungszeit für Ruhezustand (s)	0 – 500,0	15,0	√
FA11	Verzögerungszeit für Wake-up (s)	0,0 – 3000	3,0	√
FA12	Maximum output frequency of PID loop	FA09 – F111	50.00	√
FA18	Wenn das Ziel der PID-Einstellung geändert wird	0: Inaktiv, 1: Aktiv	1	x
FA19	Proportionale Verstärkung P	0,00 – 10,00	0,3	√
FA20	Integrationszeit I (s)	0,0 - 100,0 s	0,3	√
FA21	Zeitdifferenz D (s)	0,00 - 10,00	0,0	√
FA22	PID-Abtastzeitraum (s)	0,1 – 10,0 s	0,1	√
FA29	PID-Totzeit (%)	0,0 - 10,0	2,0	√
FA58	Eingegebener Branddruckwert (%)	0,0 - 100,0	80,0	√
FA59	Notfallbrandmodus	0: Inaktiv 1: Notfallbrandmodus 1 2: Notfallbrandmodus 2	0	√
FA60	Lauffrequenz im Notfallbrandmodus	F112 – F111	50,0	\checkmark
FA61	Reserviert			

15-27 Parameterreferenz

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FA62	Bei inaktiver Brand-Notfallsteuerungsklemme	Wechselrichter kann nicht manuell gestoppt werden Wechselrichter kann manuell gestoppt werden	0	×
FA63 – FA80	Reserviert			

15.11 Parameter für die Drehmomentregelung: FC00 - FC40

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FC00	Auswahl der Drehzahl-/Drehmomentregelung	0: Drehzahlregelung 1: Drehzahlregelung 2: Klemmenumschaltung	0	V
FC01	Verzögerungszeit der Umschaltung zwischen Drehmoment-/Drehzahlregelung (s)	0,0 – 1,0	0,1	х
FC02	Drehmoment-Hochlauf-/Auslaufzeit (s)	0,1 – 100,0	1	√
FC03 – FC05	Reserviert			
FC06	Quelle für Drehmomentreferenz	0: Digitale Übertragung (FC09) 1: Analogeingang AI1 2: Analogeingang AI2	0	х
FC07	Koeffizient für Drehmomentreferenz	0 – 3,000	3,000	х
FC08	Reserviert			
FC09	Befehlswert für Drehmomentreferenz (%)	0 – 300,0	100,0	√
FC10 – FC13	Reserviert			
FC14	Quelle für Offset-Drehmomentreferenz	0: Digitale Übertragung (FC17) 1: Analogeingang Al1 2: Analogeingang Al2	0	x
FC15	Koeffizient für Offset-Drehmoment	0 – 0,500	0,500	х
FC16	Grenzfrequenz für Offset-Drehmoment (%)	0 – 100,0	10,00	х
FC17	Befehlswert für Offset-Drehmoment (%)	0 – 50,0	10,00	V
FC18 – FC21	Reserviert			
FC22	Quelle für Drehzahlbegrenzung vorwärts	0: Digitale Übertragung (FC23) 1: Analogeingang Al1 2: Analogeingang Al	0	х
FC23	Drehzahlbegrenzung vorwärts (%)	0 – 100,0	10,00	√

Funktions-code	Funktion Bedeutung	Einstellbereich	Standardwert	Änderung
FC24	Quelle für Drehzahlbegrenzung rückwärts	0: Digitale Übertragung (FC25) 1: Analogeingang AI1 2: Analogeingang AI	0	х
FC25	Drehzahlbegrenzung rückwärts (%)	0 – 100,0	10,00	√
FC26 – FC27	Reserviert			
FC28	Quelle für Drehmomentbegrenzung durch Antrieb	0: Digitale Übertragung (FC30) 1: Analogeingang AI1 2: Analogeingang AI2	0	х
FC29	Koeffizient für Drehmomentbegrenzung durch Antrieb	0 – 3,000	3,000	х
FC30	Drehmomentbegrenzung durch Antrieb (%)	0 – 300,0	200,0	√
FC31	Reserviert			
FC32	Reserviert			
FC33	Quelle für regeneratorische Drehmomentbegrenzung	0: Digitale Übertragung (FC35) 1: Analogeingang AI1 2: Analogeingang AI2	0	х
FC34	Koeffizient für regeneratorische Drehmomentbegrenzung	0 – 3,000	3,000	
FC35	Regeneratorische Drehmomentbegrenzung (%)	0 – 300,0	200,00	√
FC36 – FC40	Reserviert			

Hinweis:

- x gibt an, dass Funktionscode nur im Stoppstatus geändert werden kann.
- $\sqrt{}$ gibt an, dass Funktionscode im Stopp- und Laufstatus geändert werden kann.
- Δ gibt an, dass Funktionscode im Stopp- oder Laufstatus nur angezeigt, aber nicht geändert werden kann.
- O gibt an, dass Funktionscode nicht initialisiert werden kann, da der Wechselrichter die Werkseinstellungen wiederherstellt, aber manuell geändert werden kann.

Parker Worldwide

AE - UAE, Dubai Tel: +971 4 8127100 parker.me@parker.com

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Eastern Europe,

Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BR - Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

CH - Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CL – Chile, Santiago Tel: +56 2 623 1216

CN - China, Shanghai Tel: +86 21 2899 5000

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HK – Hong Kong Tel: +852 2428 8008

HU - Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IN - India, Mumbai Tel: +91 22 6513 7081-85

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

JP - Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - South Korea, Seoul Tel: +82 2 559 0400

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

MX – Mexico, Apodaca Tel: +52 81 8156 6000

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com **PT - Portugal,** Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SG – Singapore Tel: +65 6887 6300

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

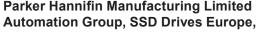
TH - Thailand, Bangkok Tel: +662 717 8140

TR - Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

TW – Taiwan, Taipei Tel: +886 2 2298 8987

UA - Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com


US – USA, Cleveland Tel: +1 216 896 3000

VE - Venezuela, Caracas Tel: +58 212 238 5422

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PT, SE, SK, UK)

 $\ensuremath{\text{@}}$ 2012 Parker Hannifin Corporation. All rights reserved.

New Courtwick Lane Littlehampton, West Sussex BN17 7RZ United Kingdom

Tel.: +44 (0) 1903 737000 Fax: +44 (0) 1903 737100 www.parker.com/ssd

